S&DS 242/542: Theory of Statistics

Lecture 15: Fisher information and the Cramer-Rao bound



Recap: Asymptotic normality of the MLE

Let X1,..., X, 0 f(x | 0) with a single parameter § € R. Under

regularity condltlons the MLE 6 satisfies
V(0 — 0) = N(0, 135)

in distribution as n — oo, where /(0) is the Fisher information,
defined by

1(0) = Varg | 2 log £(X | 9)} - [ 2 log £(X | 0)

Thus the distribution of § for large n is approximately N0, n/(e))'
and an asymptotic (1 — «)-confidence interval for 6 is

(1-a/2)
0+ z nl(e)



Expected log-likelihood function

L(g) < E, . [1) <0da

+0.(6)- L2 |
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0 0

Recall that as n — oo, if the true parameter is 6%, then the
average log-likelihood approaches the expected log-likelihood

L0a(8) = T3 log F(X; | 6) — L(6) = Eo-[log F(X | 0)]
i=1

in probability as n — co. The expected log-likelihood L(#) is
maximized at the true parameter 6*.

C k(o)



Expected score

The derivative of L(0) is
L'(9) = 2 llog (X | 6)] = Eg- [ log (X | 0)
—_——
=score

So L'(0) is the expected score. Since L(#) is maximized at 6*, this
also explains why the expected score is 0 at the true parameter 6*.



Geometry of the Fisher information

The second derivative of L(#) is

L"(6) = £5Eo-[log f(X | 6)] = Eg- [ 25 log (X | )]

Then in particular, at the true parameter 6%,

—L1"(0%) = —Eg. [ 25 log F(X | 9)’ } = 1(6%)

692

So 1(6*) measures the curvature of L(6) around its maximizer 6*.



Example of large Fisher information

9"

When Fisher information /(6*) = —L"(6*) is large, moving 6
slightly away from 6* leads to a large decrease in the log-likelihood
L(8), i.e. a small change in § makes the observed data much less
probable. In this sense, the data contains more “information” that
the parameter must be close to the true parameter 6*.



Example of small Fisher information

RN

9"

Conversely, when Fisher information /(6*) = —L"(6*) is small,
large changes in 6 only decrease the log-likelihood value L(f) by a
small amount, i.e. the observed data remains highly probable over
large ranges of 6. In this sense, our data contains less
“information” that the parameter is close to the true parameter 6*.



Fisher information as an intrinsic property of the model

To summarize:

>

>

1(0) represents the curvature of the expected log-likelihood
function around its maximum, when @ is the true parameter.

1(6) quantifies the rate at which the expected log-likelihood
decreases in value around the true parameter, and thus may
be interpreted as a measure of the expected amount of
information the data contains about 6.

We have shown that /() is related to the asymptotic variance
of the MLE, but it may also be understood as a fundamental
quantity about the model f(x | 0) irrespective of any specific
estimation procedure.



Cramer-Rao lower bound

Theorem (Cramer-Rao bound)

Consider a parametric model f(x | 6) where 6 € R is a single

parameter. Let T(Xi,...,X,) be any unbiased estimator of 0

based on data Xi, ..., X 0 f(x|0). Then

1
nl(6)

Varg[T] >

This is an example of an information-theoretic lower bound, stating
that ﬁ is a fundamental limit to how accurate any unbiased

estimator of § can be.l

!Related results show that no estimator — unbiased or not — can achieve a
. 1 .
lower asymptotic mean-squared-error than —7, except possibly at a
measure-zero set of special values for 8. We will not discuss these results in our
course.



Cramer-Rao lower bound
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Cramer-Rao lower bound
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Cramer-Rao lower bound
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Asymptotic efficiency

An estimator 0 is asymptotically efficient if, in distribution as
n — 0o,

V(B —0) - N (0, )

l.e., its variance for large n is approximately equal to the
Cramer-Rao lower bound of ﬁ. Thus, our main theorem from
last lecture shows that the MLE is asymptotically efficient.

If two estimators f; and f, based on Xi, ..., X, < f(x | @) satisfy

V(1 — 8) = N(0, vi(6))
V(02 — ) — N(0, v2(0))

as n — oo where v2(0) < v1(0), then v»(0)/v1(0) is the
asymptotic relative efficiency of 6 relative to 6;.
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Asymptotic relative efficiency

Since Var[fy] ~ Vl(g) and Var[f,] ~ VZ(Q) for large n, relative
efficiency may aIso be interpreted as the ratio of sample sizes
needed for 01 and 92 to achieve the same variance: E.g. if

v2(#) = 80% x vi(6), then d; using n samples has roughly the
same variance as 05 using 80% x n samples.

Example: For Xi,..., X, = Pareto(f, 1), we have seen that the
method-of-moments estimator Oyonm and MLE Oy g satisfy

V(Bwom — 0) — N(0, 2E=17)
Vn(Bwie — 6) — N(0,6%)

so the asymptotic relative efficiency of method-of-moments to

maximum likelihood is (6(,9 1? (which is less than 1).
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Cramer-Rao bound for plug-in estimators

The Cramer-Rao lower bound holds also for plug-in estimators:
Letting 6 be the MLE, the estimate g(0) for g(f) satisfies

Vile() - £(6)) - & (0. £ )

by the delta method. Thus Var[g(0)] ~ gn/,((ee); for large n.

Theorem
For a parametric model f(x | 0) with a single parameter 6 € R, if

T(X1,...,Xn) is any unbiased estimator of g(0) based on data

Xi,.... Xn "2 (x| 0), then

Varg[T] Z
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Efficiency of plug-in estimators

An estimator T for g(#) based on Xi,..., X, o f(x1]0)is

asymptotically efficient if, in distribution as n — oo,

V(T - g(0)) & (0,580 )

Thus, the plug-in MLE g(f) is asymptotically efficient.

Example: For X1, ..., X, 2 Pareto(,1), the mean is g(0) = %.
We have seen that

(2 @—-1)2 (9 2))

V(X — g(0)) = N
) = N0, 5%55)

V(g (Omie) — g(9))
so the asymptotic relative efficiency of X to the plug-in MLE

g(GAMLE) is also %.
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Fisher information for multiple parameters

For a parametric model with k parameters § € R¥, the Fisher
information matrix /(f) € RK*¥ is the matrix whose (i, j) entry is
defined by the equivalent expressions

0 0
1(8);; = Cove [(’99 log f(X|0), 30 log f(X|9)}
i J

82
96;00;

:—m{ |%axm]

For k =1, this "1 x 1 matrix” /() is the same as our previous
definition of the Fisher information for a single parameter.
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Asymptotic normality of the MLE

The inverse of this Fisher information matrix describes the
asymptotic covariance matrix of the MLE § € RX.

Theorem

Let f(x | 0) be a parametric model where § € R¥. Let § € R¥ be

the MLE based on X1, ..., Xy %2 f(x | 6). Then, under regularity

assumptions,

V(@ —6) — N(0,1(0)71).

The right side is a k-dimensional multivariate normal distribution,
whose covariance /(#)~! is the k x k matrix inverse of /(6).
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MLE in the Gamma model

Example: Let Xi,..., X, 0 Gamma(a, 3). Recall that the MLEs
(&, ) do not have closed-form expressions and are typically
computed numerically.
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MLE in the Gamma model
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MLE in the Gamma model

Informally, for large n, the MLEs & and BA have an approximate
bivariate normal distribution

() o)

The approximate variance of & is the upper-left entry of
%/(a,ﬁ)_l, which is % . W
The approximate covariance of & and f3 is the off-diagonal entry of

%l(a,ﬁ)_l, which is % . W This is always positive, implying

that the errors & — « and BA — B are positively correlated for large n.
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Comparison of variances when a parameter is known

Consider any model with two parameters («, §) and Fisher

information matrix
a ¢
I(au@) - <C b)

In the joint MLE (@&, 3), the asymptotic variance of & is the
upper-left entry of %I(a,ﬁ)_l, which is

11t
n a—c2/b

Suppose instead that 3 is known, and let & be the MLE in model
with a single parameter a € R. The Fisher information in this
one-parameter model is the upper-left entry of /(«, /3), so the
asymptotic variance of &' is

n a
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Comparison of variances when a parameter is known

Here a— c?/b>0and a,b > 0, so

1 >1
a—c?/b” a

1 1
=y and ; represents the

always. The difference between _—
difference in asymptotic variance of the MLE for estimating « in

settings when (3 is unknown vs. when (3 is known.

This is an example of a trade-off between model complexity and
accuracy of estimation: A complex model with more parameters
might better capture the true distribution of data, but each
individual parameter may be more difficult to estimate than in a
simpler model with fewer parameters.
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