
S&DS 242/542: Theory of Statistics
Lecture 15: Fisher information and the Cramer-Rao bound



Recap: Asymptotic normality of the MLE

Let X1, . . . ,Xn
IID⇠ f (x | ✓) with a single parameter ✓ 2 R. Under

regularity conditions, the MLE ✓̂ satisfies

p
n(✓̂ � ✓) ! N (0, 1

I (✓))

in distribution as n ! 1, where I (✓) is the Fisher information,
defined by

I (✓) = Var✓

h
@
@✓ log f (X | ✓)

i
= �E✓

h
@2

@✓2 log f (X | ✓)
i

Thus the distribution of ✓̂ for large n is approximately N (✓, 1
nI (✓)),

and an asymptotic (1� ↵)-confidence interval for ✓ is

✓̂ ± z(1�↵/2)
q

1
nI (✓̂)
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Expected log-likelihood function

theta

Ln

θ̂θ ∗ 

Recall that as n ! 1, if the true parameter is ✓⇤, then the

average log-likelihood approaches the expected log-likelihood

1

n
`n(✓) =

1

n

nX

i=1

log f (Xi | ✓) ! L(✓) = E✓⇤ [log f (X | ✓)]

in probability as n ! 1. The expected log-likelihood L(✓) is
maximized at the true parameter ✓⇤.

2



Expected score

theta

L

θ ∗ 

The derivative of L(✓) is

L0(✓) = @
@✓E✓⇤ [log f (X | ✓)] = E✓⇤ [ @@✓ log f (X | ✓)

| {z }
=score

]

So L0(✓) is the expected score. Since L(✓) is maximized at ✓⇤, this
also explains why the expected score is 0 at the true parameter ✓⇤.
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Geometry of the Fisher information

theta

L

θ ∗ 

The second derivative of L(✓) is

L00(✓) = @2

@✓2E✓⇤ [log f (X | ✓)] = E✓⇤ [ @
2

@✓2 log f (X | ✓)]

Then in particular, at the true parameter ✓⇤,

�L00(✓⇤) = �E✓⇤
h
@2

@✓2 log f (X | ✓)
���
✓=✓⇤

i
= I (✓⇤)

So I (✓⇤) measures the curvature of L(✓) around its maximizer ✓⇤.
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Example of large Fisher information

theta

−4
 * 

th
et

a^
2

θ ∗ 

When Fisher information I (✓⇤) = �L00(✓⇤) is large, moving ✓
slightly away from ✓⇤ leads to a large decrease in the log-likelihood

L(✓), i.e. a small change in ✓ makes the observed data much less

probable. In this sense, the data contains more “information” that

the parameter must be close to the true parameter ✓⇤.
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Example of small Fisher information

theta

−t
he
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/8

θ ∗ 

Conversely, when Fisher information I (✓⇤) = �L00(✓⇤) is small,

large changes in ✓ only decrease the log-likelihood value L(✓) by a

small amount, i.e. the observed data remains highly probable over

large ranges of ✓. In this sense, our data contains less

“information” that the parameter is close to the true parameter ✓⇤.
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Fisher information as an intrinsic property of the model

To summarize:

I I (✓) represents the curvature of the expected log-likelihood

function around its maximum, when ✓ is the true parameter.

I I (✓) quantifies the rate at which the expected log-likelihood

decreases in value around the true parameter, and thus may

be interpreted as a measure of the expected amount of

information the data contains about ✓.

I We have shown that I (✓) is related to the asymptotic variance

of the MLE, but it may also be understood as a fundamental

quantity about the model f (x | ✓) irrespective of any specific

estimation procedure.
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Cramer-Rao lower bound

Theorem (Cramer-Rao bound)

Consider a parametric model f (x | ✓) where ✓ 2 R is a single
parameter. Let T (X1, . . . ,Xn) be any unbiased estimator of ✓

based on data X1, . . . ,Xn
IID⇠ f (x | ✓). Then

Var✓[T ] � 1

nI (✓)

This is an example of an information-theoretic lower bound, stating

that
1

nI (✓) is a fundamental limit to how accurate any unbiased

estimator of ✓ can be.
1

1Related results show that no estimator — unbiased or not — can achieve a
lower asymptotic mean-squared-error than 1

nI (✓) , except possibly at a
measure-zero set of special values for ✓. We will not discuss these results in our
course.
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Cramer-Rao lower bound
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Cramer-Rao lower bound
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Cramer-Rao lower bound
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Asymptotic e�ciency

An estimator ✓̂ is asymptotically e�cient if, in distribution as

n ! 1, p
n(✓̂ � ✓) ! N

⇣
0, 1

I (✓)

⌘

I.e., its variance for large n is approximately equal to the

Cramer-Rao lower bound of
1

nI (✓) . Thus, our main theorem from

last lecture shows that the MLE is asymptotically e�cient.

If two estimators ✓̂1 and ✓̂2 based on X1, . . . ,Xn
IID⇠ f (x | ✓) satisfy

p
n(✓̂1 � ✓) ! N (0, v1(✓))

p
n(✓̂2 � ✓) ! N (0, v2(✓))

as n ! 1 where v2(✓) < v1(✓), then v2(✓)/v1(✓) is the
asymptotic relative e�ciency of ✓̂1 relative to ✓̂2.
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Asymptotic relative e�ciency

Since Var[✓̂1] ⇡ v1(✓)
n and Var[✓̂2] ⇡ v2(✓)

n for large n, relative
e�ciency may also be interpreted as the ratio of sample sizes

needed for ✓̂1 and ✓̂2 to achieve the same variance: E.g. if

v2(✓) = 80%⇥ v1(✓), then ✓̂1 using n samples has roughly the

same variance as ✓̂2 using 80%⇥ n samples.

Example: For X1, . . . ,Xn
IID⇠ Pareto(✓, 1), we have seen that the

method-of-moments estimator ✓̂MoM and MLE ✓̂MLE satisfy

p
n(✓̂MoM � ✓) ! N (0, ✓(✓�1)2

✓�2 )

p
n(✓̂MLE � ✓) ! N (0, ✓2)

so the asymptotic relative e�ciency of method-of-moments to

maximum likelihood is
✓(✓�2)
(✓�1)2 (which is less than 1).
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Cramer-Rao bound for plug-in estimators

The Cramer-Rao lower bound holds also for plug-in estimators:

Letting ✓̂ be the MLE, the estimate g(✓̂) for g(✓) satisfies

p
n(g(✓̂)� g(✓)) ! N

✓
0,

g 0
(✓)2

I (✓)

◆

by the delta method. Thus Var[g(✓̂)] ⇡ g 0(✓)2

nI (✓) for large n.

Theorem
For a parametric model f (x | ✓) with a single parameter ✓ 2 R, if
T (X1, . . . ,Xn) is any unbiased estimator of g(✓) based on data

X1, . . . ,Xn
IID⇠ f (x | ✓), then

Var✓[T ] � g 0
(✓)2

nI (✓)
.
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E�ciency of plug-in estimators

An estimator T for g(✓) based on X1, . . . ,Xn
IID⇠ f (x | ✓) is

asymptotically e�cient if, in distribution as n ! 1,

p
n(T � g(✓)) ! N

✓
0,

g 0
(✓)2

I (✓)

◆

Thus, the plug-in MLE g(✓̂) is asymptotically e�cient.

Example: For X1, . . . ,Xn
IID⇠ Pareto(✓, 1), the mean is g(✓) = ✓

✓�1 .

We have seen that

p
n(X̄ � g(✓)) ! N (0, ✓

(✓�1)2(✓�2))

p
n(g(✓̂MLE)� g(✓)) ! N (0, ✓2

(✓�1)4 )

so the asymptotic relative e�ciency of X̄ to the plug-in MLE

g(✓̂MLE) is also
✓(✓�2)
(✓�1)2 .
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Fisher information for multiple parameters

For a parametric model with k parameters ✓ 2 Rk
, the Fisher

information matrix I (✓) 2 Rk⇥k
is the matrix whose (i , j) entry is

defined by the equivalent expressions

I (✓)ij = Cov✓


@

@✓i
log f (X |✓), @

@✓j
log f (X |✓)

�

= �E✓


@2

@✓i@✓j
log f (X |✓)

�

For k = 1, this “1⇥ 1 matrix” I (✓) is the same as our previous

definition of the Fisher information for a single parameter.
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Asymptotic normality of the MLE

The inverse of this Fisher information matrix describes the

asymptotic covariance matrix of the MLE ✓̂ 2 Rk
.

Theorem
Let f (x | ✓) be a parametric model where ✓ 2 Rk . Let ✓̂ 2 Rk be

the MLE based on X1, . . . ,Xn
IID⇠ f (x | ✓). Then, under regularity

assumptions, p
n(✓̂ � ✓) ! N (0, I (✓)�1

).

The right side is a k-dimensional multivariate normal distribution,

whose covariance I (✓)�1
is the k ⇥ k matrix inverse of I (✓).

18



MLE in the Gamma model

Example: Let X1, . . . ,Xn
IID⇠ Gamma(↵,�). Recall that the MLEs

(↵̂, �̂) do not have closed-form expressions and are typically

computed numerically.
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MLE in the Gamma model
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MLE in the Gamma model

Informally, for large n, the MLEs ↵̂ and �̂ have an approximate

bivariate normal distribution

N
✓✓

↵
�

◆
,
1

n
I (↵,�)�1

◆

The approximate variance of ↵̂ is the upper-left entry of
1
n I (↵,�)

�1
, which is

1
n · ↵

 1(↵)↵�1 .

The approximate covariance of ↵̂ and �̂ is the o↵-diagonal entry of
1
n I (↵,�)

�1
, which is

1
n · �

 1(↵)↵�1 . This is always positive, implying

that the errors ↵̂�↵ and �̂�� are positively correlated for large n.
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Comparison of variances when a parameter is known

Consider any model with two parameters (↵,�) and Fisher

information matrix

I (↵,�) =

✓
a c
c b

◆

In the joint MLE (↵̂, �̂), the asymptotic variance of ↵̂ is the

upper-left entry of
1
n I (↵,�)

�1
, which is

1

n
· 1

a� c2/b

Suppose instead that � is known, and let ↵̂0
be the MLE in model

with a single parameter ↵ 2 R. The Fisher information in this

one-parameter model is the upper-left entry of I (↵,�), so the

asymptotic variance of ↵̂0
is

1

n
· 1
a
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Comparison of variances when a parameter is known

Here a� c2/b > 0 and a, b > 0, so

1

a� c2/b
>

1

a

always. The di↵erence between
1

a�c2/b and
1
a represents the

di↵erence in asymptotic variance of the MLE for estimating ↵ in

settings when � is unknown vs. when � is known.

This is an example of a trade-o↵ between model complexity and

accuracy of estimation: A complex model with more parameters

might better capture the true distribution of data, but each

individual parameter may be more di�cult to estimate than in a

simpler model with fewer parameters.
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