S&DS 242/542: Theory of Statistics Lecture 15: Fisher information and the Cramer-Rao bound

Recap: Asymptotic normality of the MLE

Let $X_1, \ldots, X_n \stackrel{ID}{\sim} f(x \mid \theta)$ with a single parameter $\theta \in \mathbb{R}$. Under regularity conditions, the MLE $\hat{\theta}$ satisfies

$$\sqrt{n}(\hat{\theta} - \theta) o \mathcal{N}(0, \frac{1}{I(\theta)})$$

in distribution as $n \to \infty$, where $I(\theta)$ is the Fisher information, defined by

$$I(\theta) = \mathsf{Var}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X \mid \theta) \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \log f(X \mid \theta) \right]$$

Thus the distribution of $\hat{\theta}$ for large *n* is approximately $\mathcal{N}(\theta, \frac{1}{nI(\theta)})$, and an asymptotic $(1 - \alpha)$ -confidence interval for θ is

$$\hat{\theta} \pm z^{(1-\alpha/2)} \sqrt{\frac{1}{nI(\hat{\theta})}}$$

Expected log-likelihood function

Recall that as $n \to \infty$, if the true parameter is θ^* , then the average log-likelihood approaches the *expected* log-likelihood

$$\frac{1}{n}\ell_n(\theta) = \frac{1}{n}\sum_{i=1}^n \log f(X_i \mid \theta) \to L(\theta) = \mathbb{E}_{\theta^*}[\log f(X \mid \theta)]$$

in probability as $n \to \infty$. The expected log-likelihood $L(\theta)$ is maximized at the true parameter θ^* .

Expected score

The derivative of $L(\theta)$ is

$$L'(\theta) = \frac{\partial}{\partial \theta} \mathbb{E}_{\theta^*} [\log f(X \mid \theta)] = \mathbb{E}_{\theta^*} [\underbrace{\frac{\partial}{\partial \theta} \log f(X \mid \theta)}_{=\text{score}}]$$

So $L'(\theta)$ is the expected score. Since $L(\theta)$ is maximized at θ^* , this also explains why the expected score is 0 at the true parameter θ^* .

Geometry of the Fisher information

The second derivative of $L(\theta)$ is

$$L''(heta) = rac{\partial^2}{\partial heta^2} \mathbb{E}_{ heta^*}[\log f(X \mid heta)] = \mathbb{E}_{ heta^*}[rac{\partial^2}{\partial heta^2}\log f(X \mid heta)]$$

Then in particular, at the true parameter θ^* ,

$$-L''(heta^*) = -\mathbb{E}_{ heta^*} \Big[rac{\partial^2}{\partial heta^2} \log f(X \mid heta) \Big|_{ heta = heta_*} \Big] = I(heta^*)$$

So $I(\theta^*)$ measures the curvature of $L(\theta)$ around its maximizer θ^* .

Example of large Fisher information

When Fisher information $I(\theta^*) = -L''(\theta^*)$ is large, moving θ slightly away from θ^* leads to a large decrease in the log-likelihood $L(\theta)$, i.e. a small change in θ makes the observed data much less probable. In this sense, the data contains more "information" that the parameter must be close to the true parameter θ^* .

Example of small Fisher information

Conversely, when Fisher information $I(\theta^*) = -L''(\theta^*)$ is small, large changes in θ only decrease the log-likelihood value $L(\theta)$ by a small amount, i.e. the observed data remains highly probable over large ranges of θ . In this sense, our data contains less "information" that the parameter is close to the true parameter θ^* . Fisher information as an intrinsic property of the model

To summarize:

- *I*(θ) represents the curvature of the expected log-likelihood function around its maximum, when θ is the true parameter.
- *I*(θ) quantifies the rate at which the expected log-likelihood decreases in value around the true parameter, and thus may be interpreted as a measure of the expected amount of information the data contains about θ.
- We have shown that I(θ) is related to the asymptotic variance of the MLE, but it may also be understood as a fundamental quantity about the model f(x | θ) irrespective of any specific estimation procedure.

Theorem (Cramer-Rao bound)

Consider a parametric model $f(x \mid \theta)$ where $\theta \in \mathbb{R}$ is a single parameter. Let $T(X_1, \ldots, X_n)$ be any unbiased estimator of θ based on data $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} f(x \mid \theta)$. Then

$$\mathsf{Var}_{ heta}[\mathcal{T}] \geq rac{1}{n I(heta)}$$

This is an example of an information-theoretic lower bound, stating that $\frac{1}{nI(\theta)}$ is a fundamental limit to how accurate *any* unbiased estimator of θ can be.¹

¹Related results show that no estimator — unbiased or not — can achieve a lower asymptotic mean-squared-error than $\frac{1}{nI(\theta)}$, except possibly at a measure-zero set of special values for θ . We will not discuss these results in our course.

Proof: Define Z= 30 l, (0) = 2 30 log f(X. (0) score at X: Recall, at the tru punch O, IE [] ly f(x10)]= 0, Varo [] ly f(x10)]= I(0) ⇒ E_0[2]=0, V~0[2]=n·I(0). Correlation between Z and my unbiased estimate T is Cong [Z,T] JVng [2] JVng [7] e[-1,1]

T is an unbiased estimater of O: For all O. $\theta = \mathbb{E}_{\theta}[T] = \int T(x_{y,y}x_{y}) \cdot f(x_{y,y}x_{y}|\theta) dx_{y,y}dx_{y}$ Differentiale in O:

 $I = \int T(x_{v_1}, x_n) \cdot \frac{2}{30} \cdot \frac{f(x_{v_1}, x_n \mid 0)}{20} dx_{v_1} - dx_n$ = $\frac{2}{30} \log \cdot \frac{f(x_{v_1}, x_n \mid 0)}{20} \times \frac{f(x_{v_2}, x_n \mid 0)}{20}_{10}$

 $= IE_{\theta} \left[T(X_{i}, X_{n}) \cdot \frac{2}{5\theta} l_{y} f(X_{i}, X_{n}(\theta)) \right]$

=> [= E, [TZ] So Covo[T, Z]= Eo[TZ]-Eo[T]·Eo[Z]

= EA [TZ]=1

Asymptotic efficiency

An estimator $\hat{\theta}$ is **asymptotically efficient** if, in distribution as $n \to \infty$,

$$\sqrt{n}(\hat{\theta} - \theta) \rightarrow \mathcal{N}\left(0, \frac{1}{I(\theta)}\right)$$

I.e., its variance for large *n* is approximately equal to the Cramer-Rao lower bound of $\frac{1}{nl(\theta)}$. Thus, our main theorem from last lecture shows that the MLE is asymptotically efficient.

If two estimators $\hat{ heta}_1$ and $\hat{ heta}_2$ based on $X_1, \ldots, X_n \overset{IID}{\sim} f(x \mid heta)$ satisfy

$$\sqrt{n}(\hat{\theta}_1 - \theta) \rightarrow \mathcal{N}(0, v_1(\theta))$$

 $\sqrt{n}(\hat{\theta}_2 - \theta) \rightarrow \mathcal{N}(0, v_2(\theta))$

as $n \to \infty$ where $v_2(\theta) < v_1(\theta)$, then $v_2(\theta)/v_1(\theta)$ is the asymptotic relative efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$.

Asymptotic relative efficiency

Since $\operatorname{Var}[\hat{\theta}_1] \approx \frac{v_1(\theta)}{n}$ and $\operatorname{Var}[\hat{\theta}_2] \approx \frac{v_2(\theta)}{n}$ for large *n*, relative efficiency may also be interpreted as the ratio of sample sizes needed for $\hat{\theta}_1$ and $\hat{\theta}_2$ to achieve the same variance: E.g. if $v_2(\theta) = 80\% \times v_1(\theta)$, then $\hat{\theta}_1$ using *n* samples has roughly the same variance as $\hat{\theta}_2$ using $80\% \times n$ samples.

Example: For $X_1, \ldots, X_n \stackrel{ID}{\sim} \text{Pareto}(\theta, 1)$, we have seen that the method-of-moments estimator $\hat{\theta}_{MoM}$ and MLE $\hat{\theta}_{MLE}$ satisfy

$$egin{aligned} &\sqrt{n}(\hat{ heta}_{\mathsf{MoM}}- heta) o \mathcal{N}(0,rac{ heta(heta-1)^2}{ heta-2}) \ &\sqrt{n}(\hat{ heta}_{\mathsf{MLE}}- heta) o \mathcal{N}(0, heta^2) \end{aligned}$$

so the asymptotic relative efficiency of method-of-moments to maximum likelihood is $\frac{\theta(\theta-2)}{(\theta-1)^2}$ (which is less than 1).

Cramer-Rao bound for plug-in estimators

The Cramer-Rao lower bound holds also for plug-in estimators: Letting $\hat{\theta}$ be the MLE, the estimate $g(\hat{\theta})$ for $g(\theta)$ satisfies

$$\sqrt{n}(g(\hat{\theta}) - g(\theta)) \rightarrow \mathcal{N}\left(0, \frac{g'(\theta)^2}{I(\theta)}\right)$$

by the delta method. Thus $\operatorname{Var}[g(\hat{\theta})] \approx \frac{g'(\theta)^2}{nI(\theta)}$ for large n.

Theorem

For a parametric model $f(x \mid \theta)$ with a single parameter $\theta \in \mathbb{R}$, if $T(X_1, \ldots, X_n)$ is any unbiased estimator of $g(\theta)$ based on data $X_1, \ldots, X_n \stackrel{IID}{\sim} f(x \mid \theta)$, then

$$\operatorname{Var}_{\theta}[T] \geq rac{g'(heta)^2}{nI(heta)}.$$

Efficiency of plug-in estimators

An estimator T for $g(\theta)$ based on $X_1, \ldots, X_n \stackrel{IID}{\sim} f(x \mid \theta)$ is asymptotically efficient if, in distribution as $n \to \infty$,

$$\sqrt{n}(T-g(\theta)) \rightarrow \mathcal{N}\left(0, \frac{g'(\theta)^2}{I(\theta)}\right)$$

Thus, the plug-in MLE $g(\hat{\theta})$ is asymptotically efficient.

Example: For $X_1, \ldots, X_n \stackrel{ID}{\sim} \text{Pareto}(\theta, 1)$, the mean is $g(\theta) = \frac{\theta}{\theta - 1}$. We have seen that

$$egin{aligned} &\sqrt{n}(ar{X}-g(heta))
ightarrow \mathcal{N}(0,rac{ heta}{(heta-1)^2(heta-2)}) \ &\sqrt{n}(g(\hat{ heta}_{\mathsf{MLE}})-g(heta))
ightarrow \mathcal{N}(0,rac{ heta^2}{(heta-1)^4}) \end{aligned}$$

so the asymptotic relative efficiency of \bar{X} to the plug-in MLE $g(\hat{\theta}_{\text{MLE}})$ is also $\frac{\theta(\theta-2)}{(\theta-1)^2}$.

Fisher information for multiple parameters

For a parametric model with k parameters $\theta \in \mathbb{R}^k$, the **Fisher** information matrix $I(\theta) \in \mathbb{R}^{k \times k}$ is the matrix whose (i, j) entry is defined by the equivalent expressions

$$I(\theta)_{ij} = \operatorname{Cov}_{\theta} \left[\frac{\partial}{\partial \theta_i} \log f(X|\theta), \ \frac{\partial}{\partial \theta_j} \log f(X|\theta) \right]$$
$$= -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(X|\theta) \right]$$

For k = 1, this " 1×1 matrix" $I(\theta)$ is the same as our previous definition of the Fisher information for a single parameter.

Asymptotic normality of the MLE

The inverse of this Fisher information matrix describes the asymptotic covariance matrix of the MLE $\hat{\theta} \in \mathbb{R}^k$.

Theorem

Let $f(x \mid \theta)$ be a parametric model where $\theta \in \mathbb{R}^k$. Let $\hat{\theta} \in \mathbb{R}^k$ be the MLE based on $X_1, \ldots, X_n \stackrel{ID}{\sim} f(x \mid \theta)$. Then, under regularity assumptions,

$$\sqrt{n}(\hat{\theta}-\theta) \rightarrow \mathcal{N}(0, I(\theta)^{-1}).$$

The right side is a k-dimensional multivariate normal distribution, whose covariance $I(\theta)^{-1}$ is the $k \times k$ matrix inverse of $I(\theta)$.

MLE in the Gamma model

Example: Let $X_1, \ldots, X_n \stackrel{ID}{\sim}$ Gamma (α, β) . Recall that the MLEs $(\hat{\alpha}, \hat{\beta})$ do not have closed-form expressions and are typically computed numerically.

$$f(x \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-i} e^{-\beta x}$$

$$\Rightarrow \log f(x \mid \alpha, \beta) = \alpha \log \beta - \log \Gamma(\alpha) + (\alpha - i) \log x - \beta x$$

$$\frac{2}{2\alpha} \log f(x \mid \alpha, \beta) = \log \beta - \frac{2}{2\alpha} \log \Gamma(\alpha) + \log x$$

$$= \psi(\alpha) + \log \frac{1}{2\alpha} + \log \frac{1}{2\alpha} + \log \frac{1}{2\alpha}$$

$$\frac{\partial}{\partial \beta} \log - (x | x, \beta) = \frac{\alpha}{\beta} - x$$

MLE in the Gamma model

32 log + (x(α,β)= - 2 lg P(a) = 1/ (a) trigamon Comprise

The log f(x(x, B) = 1 , De log f(x(x, B) = - de log f(x, B) = - de log 5. $I(x,\beta) = -E_{x,\beta} \begin{bmatrix} \frac{\partial^2}{\partial x^2} l_3 f(X|x,\beta) & \frac{\partial^2}{\partial x^2} l_3 f(X|x,\beta) \\ \frac{\partial^2}{\partial x^2} l_3 f(X|x,\beta) & \frac{\partial^2}{\partial p^2} l_3 f(X|x,\beta) \end{bmatrix}$

$$= \begin{bmatrix} \gamma_{i}(\alpha) & -1/\beta \\ -1/\beta & \alpha/\beta^{2} \end{bmatrix}$$

$$\Rightarrow I(\alpha, \beta)^{-1} = \frac{1}{\gamma_{i}(\alpha)\alpha'\beta^{2} - 1/\beta^{2}} \begin{bmatrix} \alpha/\beta^{2} & 1/\beta \\ 1/\beta & \gamma_{i}(\alpha) \end{bmatrix}$$

MLE in the Gamma model

Informally, for large n, the MLEs $\hat{\alpha}$ and $\hat{\beta}$ have an approximate bivariate normal distribution

$$\mathcal{N}\left(\begin{pmatrix}\alpha\\\beta\end{pmatrix}, \frac{1}{n}I(\alpha,\beta)^{-1}\right)$$

The approximate variance of $\hat{\alpha}$ is the upper-left entry of $\frac{1}{n}I(\alpha,\beta)^{-1}$, which is $\frac{1}{n} \cdot \frac{\alpha}{\psi_1(\alpha)\alpha-1}$.

The approximate covariance of $\hat{\alpha}$ and $\hat{\beta}$ is the off-diagonal entry of $\frac{1}{n}I(\alpha,\beta)^{-1}$, which is $\frac{1}{n} \cdot \frac{\beta}{\psi_1(\alpha)\alpha-1}$. This is always positive, implying that the errors $\hat{\alpha} - \alpha$ and $\hat{\beta} - \beta$ are positively correlated for large *n*.

Comparison of variances when a parameter is known

Consider any model with two parameters (α, β) and Fisher information matrix

$$I(\alpha,\beta) = \begin{pmatrix} \mathsf{a} & \mathsf{c} \\ \mathsf{c} & \mathsf{b} \end{pmatrix}$$

In the joint MLE $(\hat{\alpha}, \hat{\beta})$, the asymptotic variance of $\hat{\alpha}$ is the upper-left entry of $\frac{1}{n}I(\alpha, \beta)^{-1}$, which is

$$\frac{1}{n} \cdot \frac{1}{a - c^2/b}$$

Suppose instead that β is known, and let $\hat{\alpha}'$ be the MLE in model with a single parameter $\alpha \in \mathbb{R}$. The Fisher information in this one-parameter model is the upper-left entry of $I(\alpha, \beta)$, so the asymptotic variance of $\hat{\alpha}'$ is

$$\frac{1}{n} \cdot \frac{1}{a}$$

Comparison of variances when a parameter is known

Here
$$a - c^2/b > 0$$
 and $a, b > 0$, so $\label{eq:absolution} \frac{1}{a - c^2/b} > \frac{1}{a}$

always. The difference between $\frac{1}{a-c^2/b}$ and $\frac{1}{a}$ represents the difference in asymptotic variance of the MLE for estimating α in settings when β is unknown vs. when β is known.

This is an example of a trade-off between model complexity and accuracy of estimation: A complex model with more parameters might better capture the true distribution of data, but each individual parameter may be more difficult to estimate than in a simpler model with fewer parameters.