S&DS 242/542: Theory of Statistics Lecture 16: The generalized likelihood ratio test

# GLRT for a simple null hypothesis

Let  $f(x \mid \theta)$  be a parametric model, and  $\theta_0$  a fixed parameter. Given data  $X_1, \ldots, X_n \stackrel{IID}{\sim} f(x \mid \theta)$ , we consider testing

$$H_0: \theta = \theta_0$$
 vs.  $H_1: \theta \neq \theta_0$ 

The generalized likelihood ratio test (GLRT) rejects  $H_0$  for large values of the test statistic

$$\Lambda = \frac{\max_{\theta \in \Omega} \mathsf{lik}(\theta)}{\mathsf{lik}(\theta_0)}$$

where  $lik(\theta) = \prod_{i=1}^{n} f(X_i \mid \theta)$  is the likelihood function and  $\Omega$  is the parameter space.

The numerator is the maximum of the likelihood over all possible parameters  $\theta \in \Omega$ , i.e.  $\max_{\theta \in \Omega} \text{lik}(\theta) = \text{lik}(\hat{\theta})$  where  $\hat{\theta}$  is the MLE.

### Rationale for the GLRT

$$\Lambda = \frac{\mathsf{max}_{\theta \in \Omega} \mathsf{lik}(\theta)}{\mathsf{lik}(\theta_0)} = \frac{\mathsf{lik}(\hat{\theta})}{\mathsf{lik}(\theta_0)}$$

- The GLRT is similar to the likelihood ratio test from the Neyman-Pearson lemma. However, the alternative hypothesis H<sub>1</sub> is *not* of the simple form H<sub>1</sub> : θ = θ<sub>1</sub>, so there may not be a uniformly most powerful test. The GLRT replaces lik(θ<sub>1</sub>) in the Neyman-Pearson likelihood ratio statistic by lik(θ̂).
- ▶ We always have  $lik(\hat{\theta}) \ge lik(\theta_0)$ . For large *n*, we expect  $lik(\hat{\theta})$  to be closer to  $lik(\theta_0)$  when the true parameter is  $\theta_0$ , than when the true parameter is a different value, because  $\hat{\theta}$  is a consistent estimate of the true parameter. The GLRT tests whether  $lik(\hat{\theta})$  exceeds  $lik(\theta_0)$  by an amount that is larger than explainable by random chance, if  $\theta_0$  were the true parameter.

# The rejection region of the GLRT

Equivalently, the GLRT rejects  $H_0$  for large values of

$$2\log \Lambda = 2\ell_n(\hat{\theta}) - 2\ell_n(\theta_0)$$

where  $\ell_n(\theta)$  is the log-likelihood,

$$\ell_n(\theta) = \log \operatorname{lik}(\theta) = \sum_{i=1}^n \log f(X_i \mid \theta)$$

Under appropriate conditions, we will see that the null distribution of  $2 \log \Lambda$  for large *n* is approximately  $\chi_k^2$ , where *k* is the *dimension* of the parameter space. The level- $\alpha$  GLRT rejects  $H_0$  when

$$2\log\Lambda > \chi_k^2(\alpha)$$

where  $\chi_k^2(\alpha)$  is the upper- $\alpha$  point of  $\chi_k^2$ .

## A normal model example

To understand this null distribution  $\chi_k^2$ , let us first consider a normal model with a single parameter, so that k = 1.

Let  $X_1, \ldots, X_n \stackrel{IID}{\sim} \mathcal{N}(\theta, 1)$  and consider the problem of testing



A normal model example 2 log A = 2 ln (8) - 2 ln (00)  $= Zl_{x}(\bar{x}) - Zl_{y}(o)$  $z \geq \sum_{i=1}^{n} \left( -\frac{(X_i \cdot \overline{X})^2}{2} + \frac{(X_i \cdot 0)^2}{2} \right)$  $=\sum_{i=1}^{n}\left(-\left(\chi_{i}^{2}-\zeta\chi_{i}\chi_{i}+\chi_{i}^{2}\right)+\chi_{i}^{2}\right)$  $= \sum_{i=1}^{n} (ZX_i \overline{X} - \overline{X}^{i}) = Zn \overline{X}^{i} - n \overline{X}^{i} = n \overline{X}^{i}$ Under Ho: X~N(0, 1) JAX~N(0,1)  $\Rightarrow n \tilde{\chi}^{2}: (J_{n} \tilde{\chi})^{2} \sim \chi^{2}$ 

For more general parametric models, the following result shows that the sampling distribution of  $2 \log \Lambda$  under  $H_0$  is approximately  $\chi_k^2$  for large *n*.

#### Theorem

Let  $f(x \mid \theta)$  be a parametric model, where the parameter space  $\Omega$  has dimension k. Let  $X_1, \ldots, X_n \stackrel{IID}{\sim} f(x \mid \theta)$ , and let  $\theta_0$  be an interior point of  $\Omega$ . Under regularity conditions, for testing

$$H_0: \theta = \theta_0$$
 vs.  $H_1: \theta \neq \theta_0$ ,

the GLRT statistic  $2 \log \Lambda$  converges in distribution to  $\chi_k^2$  under  $H_0$ , as  $n \to \infty$ .

Proof sketch, for k = 1:

$$Z \log \mathcal{A} = Z l_n(\widehat{\Theta}) - Z l_n(\Theta)$$

$$Under H_0: \Theta = \Theta_0, \quad \widehat{\Theta} \to \Theta_0 \quad \text{in probability as } n \to \infty.$$

$$S_0 \quad \widehat{\Theta} - \Theta_0 \quad \text{should typically be small for lypen.}$$

$$Taylor expand \quad l_n(\Theta) \text{ and } \widehat{\Theta}:$$

$$l_n(\Theta_0) \approx l_n(\widehat{\Theta}) + l_n'(\widehat{\Theta}) (\Theta_0 - \widehat{\Theta}) + \frac{1}{2} l_n''(\widehat{\Theta}) (\Theta_0 - \widehat{\Theta})^2$$

$$= 0 \quad \text{ble } \widehat{\Theta} \text{ is the maximizer } \sigma \in l_n \qquad \approx -n \cdot I(\widehat{\Theta}) \approx -n \cdot I(\widehat{\Theta})$$

$$\approx \int_{n} (\hat{o}) - \frac{n}{2} I(\theta_{o}) (\theta_{o} - \hat{\theta})^{2}$$

> Zlay A = Zla(ô) - Zla(0,)  $\approx n \cdot \mathcal{I}(\theta_{o}) \cdot (\hat{\Theta} - \theta_{o})^{\nu}$  $\operatorname{Recull}: \operatorname{Jn}(\widehat{O} - O_{0}) \to \mathcal{N}(O, \frac{1}{I(O_{0})}) \text{ under } H_{0}: \Theta = \Theta_{0}$ in distilution as atop.  $\rightarrow \int n I(\theta_{0}) \left( \hat{\theta} - \theta_{0} \right) \rightarrow \mathcal{N}(0, 1)$ By cont. mapping that ZI3 N~ n I(0.) (ô-0.)2

## Dimension of the parameter space

The "dimension" k of the parameter space  $\Omega$  is the number of free parameters in the model, which is typically the number of parameters minus the number of distinct equality constraints.

Example: In the model  $\mathcal{N}(\theta, 1)$ , there is a single parameter  $\theta \in \mathbb{R}$  with no constraints, so the dimension of  $\Omega$  is k = 1.

Example: Let  $(X_1, \ldots, X_k) \sim \text{Multinomial}(n, (p_1, \ldots, p_k))$ . For a fixed probability vector  $(p_{0,1}, \ldots, p_{0,k})$ , consider testing

$$H_0: (p_1, \ldots, p_k) = (p_{0,1}, \ldots, p_{0,k})$$
$$H_1: (p_1, \ldots, p_k) \neq (p_{0,1}, \ldots, p_{0,k}).$$

GLRT for multinomial proportions  $\mathcal{L}(X_{1,1}, X_{k} | p_{1,1}, p_{k}) = \binom{n}{X_{1} \dots X_{k}} p_{1} p_{2} \sum_{i=1}^{N} p_{k}$ => la(pipple) = log (x, x) + x, log pit + Xkly pic  $MLE_{S}: (\hat{p}_{1}, \hat{p}_{k}) = \begin{pmatrix} X_{1} \\ n_{1} \\ \dots \\ n_{r} \end{pmatrix}$ >> Z log A = Zln(pin pu) - Zln(po,1,,po,u) = ZX, log Xiln + + ZXk log Xk/n Port Dimension of JL here is k-1 ble k parouters, I equality construint : pit 1 pk = 1. So reject Ho when US N>X h

## Testing a composite null hypothesis

Let  $f(x \mid \theta)$  be a parametric model, with parameter space  $\Omega$ . Given data  $X_1, \ldots, X_n \stackrel{ID}{\sim} f(x \mid \theta)$ , consider now a test of

 $H_0: \theta \in \Omega_0$  vs.  $H_1: \theta \notin \Omega_0$ 

where  $\Omega_0 \subset \Omega$  is a lower dimensional space in the full parameter space  $\Omega$  (representing a "sub-model" in the full model).

This is usually a setting where  $\theta \in \Omega \subset \mathbb{R}^k$  has multiple parameters, some of which remain unspecified under  $H_0$ .

Example: Let  $X_1, \ldots, X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$ . Consider testing

$$H_0: \mu = 0$$
 vs.  $H_1: \mu \neq 0$ 

when the variance  $\sigma^2$  is unknown. Here

$$\begin{split} \Omega &= \{(\mu,\sigma^2):\sigma^2>0\} \subset \mathbb{R}^2\\ \Omega_0 &= \{(\mu,\sigma^2):\mu=0,\sigma^2>0\} \end{split}$$

 $\Omega$  has dimension 2, and  $\Omega_0$  has dimension 1.



# GLRT for a composite null hypothesis

The GLRT for testing

$$H_0: \theta \in \Omega_0$$
 vs.  $H_1: \theta \notin \Omega_0$ 

rejects  $H_0$  for large values of

$$\Lambda = \frac{\max_{\theta \in \Omega} \mathsf{lik}(\theta)}{\max_{\theta \in \Omega_0} \mathsf{lik}(\theta)}$$

A is the ratio of the likelihoods evaluated at the MLE  $\hat{\theta}$  in the full model  $\Omega$  and the MLE  $\hat{\theta}_0$  in the sub-model  $\Omega_0$ .

Equivalently, the GLRT rejects  $H_0$  for large values of

$$2\log \Lambda = 2\ell_n(\hat{\theta}) - 2\ell_n(\hat{\theta}_0)$$

#### Theorem

Let  $f(x \mid \theta)$  be a parametric model, where the parameter space  $\Omega$  has dimension k, and the parameter space of the sub-model  $\Omega_0$  has dimension  $k_0$ . Let  $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} f(x \mid \theta)$ . Under regularity conditions, for testing

$$H_0: \theta \in \Omega_0$$
 vs  $H_1: \theta \notin \Omega_0$ ,

the GLRT statistic  $2 \log \Lambda$  under any true parameter  $\theta_0$  in the interior of  $\Omega_0$  converges in distribution to  $\chi^2_{k-k_0}$ , as  $n \to \infty$ . Thus the level- $\alpha$  GLRT rejects  $H_0$  when

$$2\log\Lambda\geq\chi^2_{k-k_0}(\alpha)$$

where  $k - k_0$  is the difference in dimensions between  $\Omega$  and  $\Omega_0$ . (If  $\Omega_0 = \{\theta_0\}$  is a single point, then  $k_0 = 0$ , reducing to the previous case of a simple null hypothesis.)

Let  $X_1, \ldots, X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$ . Consider testing

 $H_0: \mu = 0$  vs.  $H_1: \mu \neq 0$ 

when  $\sigma^2 > 0$  is unknown.

 $f(x|_{\mathcal{M},\sigma^2}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-w)^2}{2\sigma^2}}$  $= \int_{m} (\mu, \sigma^{2}) = \sum_{n=1}^{\infty} \left( -\frac{1}{2} \log 2\pi \sigma^{2} - \frac{(\chi, -\mu)^{2}}{2} \right)$ = - = 1 2 2 0 - - + = = (X. - w) MLEs in the full would: ( in or) = (X, the Di (X, -X)2)

In submidd in=0: l (0, 02) = - " 6 2x0" - L 2 X2 Bil (0, v) - - 1 + 1 EX. Set O = 2 ln(0, 02) and some for or  $\exists \left(\hat{\mu}_{o}, \hat{\sigma}_{o}^{2}\right) = \left(0, \pm \hat{\Sigma}_{u}^{2} X_{u}^{2}\right)$ So  $Z \log \mathcal{A} = 2 l_n(\hat{\mu}, \hat{\sigma}^2) - 2 l_n(\hat{\mu}_0, \hat{\sigma}_0^2)$ = Zla(x, 22)-Zla(0, 22)

= Z(-2 1, 2.0 - 1, 2 (x-x) + 2 1, 2.0 + 1, 2x) = n log -= n log - z X. - + z (X. - X) Difference of dimensions: 2-1=1. So reject Ho when Zly A > Xila)

#### Relationship to the t-test

In this example, the GLRT is in fact equivalent to a two-sided t-test:

32= + = (X,-x)= += (X,-2X, x+x)  $= (\underbrace{1}_{x} \underbrace{\widetilde{\Sigma}}_{x} \underbrace{\chi}_{y}) - \underbrace{2}_{x} \underbrace{\widetilde{\chi}}_{x} \underbrace{\chi}_{y}^{2} = (\underbrace{1}_{x} \underbrace{\widetilde{\Sigma}}_{x} \underbrace{\chi}_{y}) - \underbrace{\chi}_{z}^{2} = \widehat{\varphi}_{z}^{2} - \underbrace{\chi}_{z}^{2}$  $\Rightarrow Zl_{3} \Lambda^{z} n l_{3} \frac{\hat{\sigma}^{z}}{\hat{\sigma}^{z}} = n l_{y} \frac{\hat{\sigma}^{z} + \tilde{\chi}^{z}}{\hat{\sigma}^{z}} = n l_{y} \left( l + \frac{\tilde{\chi}^{z}}{\hat{\sigma}^{z}} \right)$ · Recall the t-statistic: T= Jnx = Jnx 18

Relationship to the t-test

# Relationship to the t-test

Thus  $2 \log \Lambda$  is an increasing function of |T|. Rejecting  $H_0$  for large values of  $2 \log \Lambda$  is equivalent to rejecting  $H_0$  for large values of |T|.

A difference between the GLRT and t-test is that the GLRT threshold is asymptotic, whereas the t-test threshold is exact:

- The usual two-sided t-test would reject H<sub>0</sub> when |T| > t<sup>(α/2)</sup><sub>n-1</sub>, the upper-<sup>α</sup>/<sub>2</sub> point of the t-distribution. This achieves Type I error probability exactly α when the data are normal.
- The GLRT may be thought of as making the approximations

$$2\log \Lambda = n\log\left(1 + \frac{1}{n-1}T^2\right) \approx \frac{n}{n-1}T^2 \approx T^2$$

and also approximating the distribution of  $T^2$  by the  $\chi_1^2$  distribution of  $Z^2$ , where  $Z \sim \mathcal{N}(0, 1)$ . These approximations become more accurate as *n* increases.

# Testing Hardy-Weinberg equilibrium

At a single locus in the genome with two possible alleles A and a, an individual can have genotype AA, Aa, or aa. If we randomly select n individuals from a population, we may model the numbers of individuals with these genotypes as

$$(X_{AA}, X_{Aa}, X_{aa}) \sim \mathsf{Multinomial}(n, (p_{AA}, p_{Aa}, p_{aa}))$$

When the alleles A and a are present in the population with proportions  $1 - \theta$  and  $\theta$ , then under an assumption of random mating, genetics theory predicts that

$$p_{AA} = (1 - \theta)^2, \quad p_{Aa} = 2\theta(1 - \theta), \quad p_{aa} = \theta^2$$

This is called the hypothesis of Hardy-Weinberg equilibrium.

## Testing Hardy-Weinberg equilibrium

We may specify Hardy-Weinberg equilibrium as the null hypothesis

$$H_0: p_{AA} = (1- heta)^2, \ p_{Aa} = 2 heta(1- heta), \ p_{aa} = heta^2$$
 for some  $heta \in [0,1]$ 

This corresponds to testing a 1-dimensional sub-model

$$\Omega_0 = \left\{ \left( (1- heta)^2, 2 heta(1- heta), heta^2 
ight) : heta \in [0,1] 
ight\}$$

inside the 2-dimensional multinomial model

$$\Omega = \left\{ (p_{AA}, p_{Aa}, p_{aa}) : p_{AA}, p_{Aa}, p_{aa} \ge 0 \text{ and } p_{AA} + p_{Aa} + p_{aa} = 1 \right\}$$

### Testing Hardy-Weinberg equilibrium

To carry out this test using the GLRT:

Qn (pAA, PA, Pan) = log (XAA, XAN, Xm) + XAA & PAA + XAn by PAn + Xan by Pan · Full-midd MLES: (pAN, pAn, pan)= (XM Xm Xm) · Sabordad MLE (For Lever 12): 0= ZXan + XAn => (po, AA, po, A., po, ...) = ((1-ô), 2ô(1-d), ô2) =) Zlo L= Zla (pA, pa, pa) - Zla (po, AA, po, A., po, a) Dillen in diversions: Z-1=1. So give the when ZGL > Xi lad

## Example from Rice

Example 8.5.1A of Rice's text analyzes genotype data from n = 1029 individuals in Hong Kong, in which the alleles determine the presence of an antigen in the red blood cell. In this example,

$$X_{AA} = 342, X_{Aa} = 500, X_{aa} = 187$$

We may calculate

$$\hat{p}_{AA} = 0.332, \ \hat{p}_{Aa} = 0.486, \ \hat{p}_{aa} = 0.182$$
  
and  $\hat{\theta} = \frac{2 \times 187 + 500}{2 \times 1029} = 0.425,$   
 $\hat{p}_{0,AA} = 0.331, \ \hat{p}_{0,Aa} = 0.489, \ \hat{p}_{aa} = 0.180$ 

This gives  $2 \log \Lambda = 0.0325$ . Letting *F* be the  $\chi_1^2$  CDF, the *p*-value for the GLRT is 1 - F(0.0325) = 0.86, so there is no significant evidence of deviation from Hardy-Weinberg equilibrium.