
S&DS 242/542: Theory of Statistics

Lecture 16: The generalized likelihood ratio test



GLRT for a simple null hypothesis

Let f (x | ✓) be a parametric model, and ✓0 a fixed parameter.

Given data X1, . . . ,Xn
IID⇠ f (x | ✓), we consider testing

H0 : ✓ = ✓0 vs. H1 : ✓ 6= ✓0

The generalized likelihood ratio test (GLRT) rejects H0 for

large values of the test statistic

⇤ =
max✓2⌦ lik(✓)

lik(✓0)

where lik(✓) =
Qn

i=1 f (Xi | ✓) is the likelihood function and ⌦ is

the parameter space.

The numerator is the maximum of the likelihood over all possible

parameters ✓ 2 ⌦, i.e. max✓2⌦ lik(✓) = lik(✓̂) where ✓̂ is the MLE.
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Rationale for the GLRT

⇤ =
max✓2⌦ lik(✓)

lik(✓0)
=

lik(✓̂)

lik(✓0)

I The GLRT is similar to the likelihood ratio test from the

Neyman-Pearson lemma. However, the alternative hypothesis

H1 is not of the simple form H1 : ✓ = ✓1, so there may not be

a uniformly most powerful test. The GLRT replaces lik(✓1) in
the Neyman-Pearson likelihood ratio statistic by lik(✓̂).

I We always have lik(✓̂) � lik(✓0). For large n, we expect lik(✓̂)
to be closer to lik(✓0) when the true parameter is ✓0, than
when the true parameter is a di↵erent value, because ✓̂ is a

consistent estimate of the true parameter. The GLRT tests

whether lik(✓̂) exceeds lik(✓0) by an amount that is larger than

explainable by random chance, if ✓0 were the true parameter.
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The rejection region of the GLRT

Equivalently, the GLRT rejects H0 for large values of

2 log⇤ = 2`n(✓̂)� 2`n(✓0)

where `n(✓) is the log-likelihood,

`n(✓) = log lik(✓) =
nX

i=1

log f (Xi | ✓)

Under appropriate conditions, we will see that the null distribution

of 2 log⇤ for large n is approximately �2
k , where k is the dimension

of the parameter space. The level-↵ GLRT rejects H0 when

2 log⇤ > �2
k(↵)

where �2
k(↵) is the upper-↵ point of �2

k .
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A normal model example

To understand this null distribution �2
k , let us first consider a

normal model with a single parameter, so that k = 1.

Let X1, . . . ,Xn
IID⇠ N (✓, 1) and consider the problem of testing

H0 : ✓ = 0 vs. H1 : ✓ 6= 0

4



A normal model example
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Asymptotic null distribution for the GLRT

For more general parametric models, the following result shows

that the sampling distribution of 2 log⇤ under H0 is approximately

�2
k for large n.

Theorem

Let f (x | ✓) be a parametric model, where the parameter space ⌦

has dimension k . Let X1, . . . ,Xn
IID⇠ f (x | ✓), and let ✓0 be an

interior point of ⌦. Under regularity conditions, for testing

H0 : ✓ = ✓0 vs. H1 : ✓ 6= ✓0,

the GLRT statistic 2 log⇤ converges in distribution to �2
k under

H0, as n ! 1.
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Asymptotic null distribution for the GLRT

Proof sketch, for k = 1:
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Asymptotic null distribution for the GLRT
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Dimension of the parameter space

The “dimension” k of the parameter space ⌦ is the number of free

parameters in the model, which is typically the number of

parameters minus the number of distinct equality constraints.

Example: In the model N (✓, 1), there is a single parameter ✓ 2 R
with no constraints, so the dimension of ⌦ is k = 1.

Example: Let (X1, . . . ,Xk) ⇠ Multinomial(n, (p1, . . . , pk)). For a
fixed probability vector (p0,1, . . . , p0,k), consider testing

H0 : (p1, . . . , pk) = (p0,1, . . . , p0,k)

H1 : (p1, . . . , pk) 6= (p0,1, . . . , p0,k).
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GLRT for multinomial proportions
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Testing a composite null hypothesis

Let f (x | ✓) be a parametric model, with parameter space ⌦. Given

data X1, . . . ,Xn
IID⇠ f (x | ✓), consider now a test of

H0 : ✓ 2 ⌦0 vs. H1 : ✓ /2 ⌦0

where ⌦0 ⇢ ⌦ is a lower dimensional space in the full parameter

space ⌦ (representing a “sub-model” in the full model).

This is usually a setting where ✓ 2 ⌦ ⇢ Rk
has multiple

parameters, some of which remain unspecified under H0.
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Normal mean testing with unknown variance

Example: Let X1, . . . ,Xn
IID⇠ N (µ,�2

). Consider testing

H0 : µ = 0 vs. H1 : µ 6= 0

when the variance �2
is unknown. Here

⌦ = {(µ,�2
) : �2 > 0} ⇢ R2

⌦0 = {(µ,�2
) : µ = 0,�2 > 0}

⌦ has dimension 2, and ⌦0 has dimension 1.
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GLRT for a composite null hypothesis

The GLRT for testing

H0 : ✓ 2 ⌦0 vs. H1 : ✓ /2 ⌦0

rejects H0 for large values of

⇤ =
max✓2⌦ lik(✓)

max✓2⌦0 lik(✓)

⇤ is the ratio of the likelihoods evaluated at the MLE ✓̂ in the full

model ⌦ and the MLE ✓̂0 in the sub-model ⌦0.

Equivalently, the GLRT rejects H0 for large values of

2 log⇤ = 2`n(✓̂)� 2`n(✓̂0)
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Asymptotic null distribution for the GLRT

Theorem

Let f (x | ✓) be a parametric model, where the parameter space ⌦

has dimension k , and the parameter space of the sub-model ⌦0 has

dimension k0. Let X1, . . . ,Xn
IID⇠ f (x | ✓). Under regularity

conditions, for testing

H0 : ✓ 2 ⌦0 vs H1 : ✓ /2 ⌦0,

the GLRT statistic 2 log⇤ under any true parameter ✓0 in the

interior of ⌦0 converges in distribution to �2
k�k0

, as n ! 1.

Thus the level-↵ GLRT rejects H0 when

2 log⇤ � �2
k�k0(↵)

where k � k0 is the di↵erence in dimensions between ⌦ and ⌦0. (If

⌦0 = {✓0} is a single point, then k0 = 0, reducing to the previous

case of a simple null hypothesis.)
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Normal mean testing with unknown variance

Let X1, . . . ,Xn
IID⇠ N (µ,�2

). Consider testing

H0 : µ = 0 vs. H1 : µ 6= 0

when �2 > 0 is unknown.
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Normal mean testing with unknown variance
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Normal mean testing with unknown variance
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Relationship to the t-test

In this example, the GLRT is in fact equivalent to a two-sided

t-test:
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Relationship to the t-test
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Relationship to the t-test

Thus 2 log⇤ is an increasing function of |T |. Rejecting H0 for large

values of 2 log⇤ is equivalent to rejecting H0 for large values of |T |.

A di↵erence between the GLRT and t-test is that the GLRT

threshold is asymptotic, whereas the t-test threshold is exact:

I The usual two-sided t-test would reject H0 when |T | > t
(↵/2)
n�1 ,

the upper-
↵
2 point of the t-distribution. This achieves Type I

error probability exactly ↵ when the data are normal.

I The GLRT may be thought of as making the approximations

2 log⇤ = n log

✓
1 +

1

n � 1
T

2

◆
⇡ n

n � 1
T

2 ⇡ T
2

and also approximating the distribution of T
2
by the �2

1
distribution of Z

2
, where Z ⇠ N (0, 1). These approximations

become more accurate as n increases.
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Testing Hardy-Weinberg equilibrium

At a single locus in the genome with two possible alleles A and a,

an individual can have genotype AA, Aa, or aa. If we randomly

select n individuals from a population, we may model the numbers

of individuals with these genotypes as

(XAA,XAa,Xaa) ⇠ Multinomial(n, (pAA, pAa, paa))

When the alleles A and a are present in the population with

proportions 1� ✓ and ✓, then under an assumption of random

mating, genetics theory predicts that

pAA = (1� ✓)2, pAa = 2✓(1� ✓), paa = ✓2

This is called the hypothesis of Hardy-Weinberg equilibrium.
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Testing Hardy-Weinberg equilibrium

We may specify Hardy-Weinberg equilibrium as the null hypothesis

H0 : pAA = (1� ✓)2, pAa = 2✓(1� ✓), paa = ✓2 for some ✓ 2 [0, 1]

This corresponds to testing a 1-dimensional sub-model

⌦0 =

n⇣
(1� ✓)2, 2✓(1� ✓), ✓2

⌘
: ✓ 2 [0, 1]

o

inside the 2-dimensional multinomial model

⌦ =

n
(pAA, pAa, paa) : pAA, pAa, paa � 0 and pAA + pAa + paa = 1

o
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Testing Hardy-Weinberg equilibrium

To carry out this test using the GLRT:
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Example from Rice

Example 8.5.1A of Rice’s text analyzes genotype data from

n = 1029 individuals in Hong Kong, in which the alleles determine

the presence of an antigen in the red blood cell. In this example,

XAA = 342, XAa = 500, Xaa = 187

We may calculate

p̂AA = 0.332, p̂Aa = 0.486, p̂aa = 0.182

and ✓̂ =
2⇥187+500
2⇥1029 = 0.425,

p̂0,AA = 0.331, p̂0,Aa = 0.489, p̂aa = 0.180

This gives 2 log⇤ = 0.0325. Letting F be the �2
1 CDF, the p-value

for the GLRT is 1� F (0.0325) = 0.86, so there is no significant

evidence of deviation from Hardy-Weinberg equilibrium.

25


