S&DS 242/542: Theory of Statistics

Lecture 16: The generalized likelihood ratio test



GLRT for a simple null hypothesis

Let f(x | §) be a parametric model, and 6y a fixed parameter.

Given data X1, ..., X, 2 f(x | @), we consider testing

H()ZQZHO VS. H1:97590

The generalized likelihood ratio test (GLRT) rejects Hy for
large values of the test statistic

maxgpeQ |Ik(9)

= lik(6o)

where lik(0) = [[7_; f(Xi | 6) is the likelihood function and € is
the parameter space.

The numerator is the maximum of the likelihood over all possible
parameters 6 € , i.e. maxgeq lik(0) = lik(0) where 6 is the MLE.



Rationale for the GLRT

 maxgeq lik(0)  lik(d)
© lik(Bo)  lik(6o)

» The GLRT is similar to the likelihood ratio test from the
Neyman-Pearson lemma. However, the alternative hypothesis
Hy is not of the simple form H; : 6 = 61, so there may not be
a uniformly most powerful test. The GLRT replaces lik(f;) in
the Neyman-Pearson likelihood ratio statistic by lik(f).

> We always have lik(f) > lik(fp). For large n, we expect lik(f)
to be closer to lik(6p) when the true parameter is g, than
when the true parameter is a different value, because § is a
consistent esAtimate of the true parameter. The GLRT tests

whether lik(0) exceeds lik(6p) by an amount that is larger than
explainable by random chance, if 8y were the true parameter.



The rejection region of the GLRT
Equivalently, the GLRT rejects Hy for large values of
2log A = 20,(0) — 20,(6)

where £,(0) is the log-likelihood,
0n(0) = loglik(6) = "log f(X; | 0)
i=1

Under appropriate conditions, we will see that the null distribution
of 2log A for large n is approximately X,%, where k is the dimension
of the parameter space. The level-a GLRT rejects Hy when

2log A > x3(a)

where x2(«) is the upper-a point of x2.



A normal model example

To understand this null distribution x2, let us first consider a
normal model with a single parameter, so that kK = 1.

Let X1,...,X, 0 N(6,1) and consider the problem of testing

Hy:0=0 Vs. Hi:6=+0
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A normal model example
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Asymptotic null distribution for the GLRT

For more general parametric models, the following result shows
that the sampling distribution of 2 log A under Hy is approximately
Xﬁ for large n.

Theorem

Let f(x | ) be a parametric model, where the parameter space

has dimension k. Let X1,..., X, © f(x | @), and let 6y be an

interior point of Q). Under regularity conditions, for testing
H029:90 Vs. H1297590,

the GLRT statistic 2 log \ converges in distribution to Xi under
Hy, as n — oo.



Asymptotic null distribution for the GLRT
Proof sketch, for k = 1:
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Asymptotic null distribution for the GLRT
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Dimension of the parameter space

The “dimension” k of the parameter space € is the number of free
parameters in the model, which is typically the number of
parameters minus the number of distinct equality constraints.

Example: In the model N (6,1), there is a single parameter § € R
with no constraints, so the dimension of Q is kK = 1.

Example: Let (Xi,...,Xk) ~ Multinomial(n, (p1,...,pk)). For a
fixed probability vector (po1,. .., po k), consider testing

Ho : (p1,---,pk) = (P01 -, Pok)
Hy : (P17 e 7pk) # (PO,la .- ~7p0,k)-



GLRT for multinomial proportions
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Testing a composite null hypothesis

Let f(x | ) be a parametric model, with parameter space Q. Given

1D .
data Xi,..., X, ~ f(x|#), consider now a test of

Hy: 0 € Qg VS. H1:9¢QQ

where Qp C Q is a lower dimensional space in the full parameter
space 2 (representing a “sub-model” in the full model).

This is usually a setting where 6 € Q C R¥ has multiple
parameters, some of which remain unspecified under Hy.
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Normal mean testing with unknown variance

Example: Let Xi,..., X, 0 N (u,0?). Consider testing

Ho:p=0 VS. Hi:pn#0

2

when the variance ¢ is unknown. Here

Q={(n,0?) : 0> >0} CR?
Qo = {(1,0%) : p=0,0% >0}

Q has dimension 2, and Qg has dimension 1.

i
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GLRT for a composite null hypothesis

The GLRT for testing
Hy : 0 € Qo VS. H1:0¢Qo
rejects Hp for large values of

_ maxgeq lik(6)
maxgpeq, lik(6)

A is the ratio of the likelihoods evaluated at the MLE 4 in the full
model € and the MLE 6 in the sub-model .

Equivalently, the GLRT rejects Hy for large values of

2log A = 20,(0) — 20,(o)
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Asymptotic null distribution for the GLRT

Theorem
Let f(x | 8) be a parametric model, where the parameter space 2

has dimension k, and the parameter space of the sub-model €y has
dimension ky. Let Xi,..., X, 0 f(x | 0). Under regularity

conditions, for testing
Hy: 60 € Qo Vs H1:9¢Qo,

the GLRT statistic 2 log \ under any true parameter 6y in the
interior of Qg converges in distribution to X,z(_ ko @S N —> 00.

Thus the level-a GLRT rejects Hy when
2log A > XG_ (@)

where k — ko is the difference in dimensions between Q and Qq. (If
Qo = {6p} is a single point, then kg = 0, reducing to the previous
case of a simple null hypothesis.)
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Normal mean testing with unknown variance

Let X1,..., X, 0 N (u,0?). Consider testing
Ho:pn=0 VS. Hi:u#0
when 2 > 0 is unknown. ¢ N
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Normal mean testing with unknown variance
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Normal mean testing with unknown variance
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Relationship to the t-test

In this example, the GLRT is in fact equivalent to a two-sided
t-test:
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Relationship to the t-test
2
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Relationship to the t-test

Thus 2log A is an increasing function of | T|. Rejecting Hy for large
values of 2log A is equivalent to rejecting Hp for large values of | T|.

A difference between the GLRT and t-test is that the GLRT
threshold is asymptotic, whereas the t-test threshold is exact:

» The usual two-sided t-test would reject Hy when |T| > tr(fi/lz),
o

the upper-5 point of the t-distribution. This achieves Type |
error probability exactly o when the data are normal.

» The GLRT may be thought of as making the approximations

n 2
n—1

T2

%

1
2log\ = nlog <1+T2> ~
n—1

and also approximating the distribution of T2 by the X%
distribution of Z2, where Z ~ N(0,1). These approximations
become more accurate as n increases.
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Testing Hardy-Weinberg equilibrium

At a single locus in the genome with two possible alleles A and a,
an individual can have genotype AA, Aa, or aa. If we randomly
select n individuals from a population, we may model the numbers
of individuals with these genotypes as

(Xaa, Xaa, Xaa) ~ Multinomial(n, (paa, PAa: Paa))

When the alleles A and a are present in the population with
proportions 1 — 6 and @, then under an assumption of random
mating, genetics theory predicts that

pan=(1— 02, pas=20(1—0), pay=0°

This is called the hypothesis of Hardy-Weinberg equilibrium.
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Testing Hardy-Weinberg equilibrium

We may specify Hardy-Weinberg equilibrium as the null hypothesis
Ho : paa = (1 —0)2, pas =20(1 —0), p., = 6 for some 0 € [0,1]
This corresponds to testing a 1-dimensional sub-model

Qo = {((1 —9)2,20(1 — 9),92) L0 €0, 1]}
inside the 2-dimensional multinomial model

Q= {(PAAapAavpaa)  PAA; PAa, Paa > 0 and PAA + PAs + Paa = 1}
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Testing Hardy-Weinberg equilibrium
To carry out this test using the GLRT:
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Example from Rice

Example 8.5.1A of Rice's text analyzes genotype data from
n = 1029 individuals in Hong Kong, in which the alleles determine
the presence of an antigen in the red blood cell. In this example,

Xaa = 342, Xa, = 500, X5, = 187
We may calculate
paa = 0.332, pa, = 0.486, p,, = 0.182
and § = % = 0.425,

Po.aa = 0.331, poas = 0.489, p,, = 0.180

This gives 2log A = 0.0325. Letting F be the x3 CDF, the p-value
for the GLRT is 1 — F(0.0325) = 0.86, so there is no significant
evidence of deviation from Hardy-Weinberg equilibrium.
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