
S&DS 242/542: Theory of Statistics
Lecture 17: Bayesian Inference I



Bayesian inference

Given data X1, . . . ,Xn
IID⇠ f (x | ✓) from a parametric model, we’ve

discussed two approaches for estimating the parameter ✓:

I Method-of-moments

I Maximum likelihood

We developed tools to study the sampling distributions of these

estimators for large n and to construct confidence intervals for ✓.

All of our discussion has treated ✓ as an unknown but non-random
parameter, which describes the distribution of our data. This is

called the frequentist paradigm of statistical inference.

In this lecture, we introduce the Bayesian paradigm, where ✓ is

also modeled as random. Bayesian inference starts with our prior

belief about ✓, and updates this belief based on observed data.
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Prior and posterior distributions



Conditional and marginal distributions

If X and Y have joint PDF or PMF fX ,Y (x , y), then the marginal
distribution of X is given by the PDF or PMF

fX (x) =

Z

Y
fX ,Y (x , y)dy , fX (x) =

X

y2Y
fX ,Y (x , y)

where Y is the domain of possible values for Y. This describes the

probability distribution of X alone, marginalizing over all possible

values of Y .

The conditional distribution of Y given X = x is then defined by

the PDF or PMF

fY |X (y | x) =
fX ,Y (x , y)

fX (x)

This describes the distribution of Y after observing X = x .
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Prior distribution and likelihood

In Bayesian inference, the unknown parameter ⇥ is modeled as a

random variable, with a probability distribution

⇥ ⇠ f⇥(✓)

called its prior distribution. This represents our prior belief about
the value of ⇥, before observing any data.

The parametric model or likelihood function describing the

distribution of our data X = (X1, . . . ,Xn) is then interpreted as a

conditional distribution of X given ⇥, which we now write as

X ⇠ fX|⇥(x | ✓)

(In previous lectures, we wrote this simply as f (x | ✓).)
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Marginal distribution of the data

This defines a joint probability distribution over both the

parameter ⇥ and the observed data X, with joint PDF/PMF

fX,⇥(x, ✓) = fX|⇥(x | ✓)f⇥(✓)

Under this joint distribution, the marginal distribution of ⇥ is

simply the prior f⇥(✓). The marginal distribution of the data X is
1

fX(x) =
Z

fX,⇥(x, ✓)d✓ =

Z
fX|⇥(x | ✓)f⇥(✓)d✓

This represents the probability distribution for our observed data

X, if we assume ⇥ is also random and marginalize over its

randomness.

1If ⇥ is discrete, then this integral should be replaced by a sum.
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Posterior distribution of the parameter

Bayesian inference is based upon the conditional distribution of the

parameter ⇥ given the data X. This conditional distribution is

f⇥|X(✓ | x) =
fX,⇥(x, ✓)

fX(x)
=

fX|⇥(x | ✓)f⇥(✓)
fX(x)

This is called the posterior distribution of ⇥: It represents our

knowledge about the parameter ⇥ after observing X.

We often summarize the preceding equation simply as

f⇥|X(✓ | x) / fX|⇥(x | ✓)f⇥(✓)
Posterior / Likelihood⇥ Prior

where the symbol / hides the proportionality factor 1/fX(x) which
does not depend on ✓.
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Example: Uniform prior for a Bernoulli proportion

Let X1, . . . ,Xn
IID⇠ Bernoulli(p). Suppose p is unknown, and we

model it as random with prior P ⇠ Uniform(0, 1). To derive the

posterior:
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Example: Uniform prior for a Bernoulli proportion
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Example: Uniform prior for a Bernoulli proportion

We computed explicitly the marginal distribution fX(x), but this
was not actually necessary to derive the posterior distribution.

Indeed, omitting factors not depending on p,

fP|X(p | x) / fX|P(x | p)fP(p) / ps(1� p)n�s

This means the PDF of the posterior distribution of P has the form

fP|X(p | x) = 1

C (x)
ps(1� p)n�s

where the proportionality constant C (x) must be the unique value

that makes this PDF integrate to 1 over p 2 (0, 1). So C (x) is the
normalizing constant for the Beta(s + 1, n � s + 1) distribution,

and the posterior distribution must be Beta(s + 1, n � s + 1).
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Example: Beta prior for a Bernoulli proportion

Let X1, . . . ,Xn
IID⇠ Bernoulli(p). We model p as random with prior

P ⇠ Beta(↵,�). To derive the posterior distribution:
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Example: Gamma prior in the Poisson model

Let X1, . . . ,Xn
IID⇠ Poisson(�). We model � as random with prior

⇤ ⇠ Gamma(↵,�). To derive the posterior distribution:
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Conjugate priors

A family of priors f⇥(✓) are called conjugate priors for a

parametric model fX|⇥(x | ✓) if the resulting posteriors f⇥|X(✓ | x)
have the same parametric form as the priors. So

I Beta(↵,�) are conjugate priors for the model Bernoulli(p)

I Gamma(↵,�) are conjugate priors for the model Poisson(�)

Conjugate priors exist for many simple parametric models, and are

mathematically/computationally convenient because they lead to

posteriors that are common distributions and easy to compute.

This convenience does not necessarily imply desirable statistical

properties — for example, conjugate priors are typically light-tailed

distributions that bias posterior inferences towards the prior mean.

Non-conjugate (in particular heavier-tailed) priors are also often

used to yield posterior inferences that are more robust to the choice

of the prior, even if this requires more intensive computation.
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Example: Normal prior for a normal mean

Let X1, . . . ,Xn
IID⇠ N (✓, 1⇠ ), where for convenience we parametrize

the model by the precision ⇠ =
1
�2 instead of the variance �2

.

Suppose ⇠ is known, ✓ is unknown with prior ⇥ ⇠ N (µprior,
1

⇠prior
).
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Example: Normal prior for a normal mean
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Example: Normal prior for a normal variance

Let X1, . . . ,Xn
IID⇠ N (✓, 1⇠ ). Suppose ✓ is known, ⇠ is unknown

with prior ⌅ ⇠ Gamma(↵,�).
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Point estimates and credible intervals



Bayesian point estimates and credible intervals

In many applications, we may want a single estimate ✓̂ and an

interval that quantifies our uncertainty about ✓, instead of a full

posterior distribution.

The posterior mean and posterior mode are the mean and mode

of the posterior distribution of ⇥, and either may be used as a

Bayesian estimate ✓̂ for ✓.

A Bayesian credible interval with coverage 1� ↵ is an interval

I (X) that contains ⇥ with posterior probability 1� ↵:

P[⇥ 2 I (X) | X = x ] = 1� ↵

where the probability is over ⇥, instead of X as in the frequentist

confidence interval. A common choice is the interval from the

lower-↵/2 to upper-↵/2 point of the posterior distribution of ⇥.
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Example: Beta prior for a Bernoulli proportion

Let X1, . . . ,Xn
IID⇠ Bernoulli(p), with prior P ⇠ Beta(↵,�). Recall

that the posterior distribution is

P ⇠ Beta(S + ↵, n � S + �), S = X1 + . . .+ Xn

The posterior mean is

p̂ =
S + ↵

n + ↵+ �

This is di↵erent from the MLE/MoM-estimator X̄ =
S
n , and is

biased towards the prior mean.

One interpretation is that p̂ is the sample mean as if we had

observed — a priori — ↵ heads and � tails before seeing our data.

This gives an interpretation also for the Beta(↵,�) prior.
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Example: Beta prior for a Bernoulli proportion

An alternative interpretation is that p̂ is a weighted average of the

sample mean and prior mean,

p̂ =
S + ↵

n + ↵+ �
=

n

n + ↵+ �| {z }
sample weight

· S

n|{z}
sample mean

+
↵+ �

n + ↵+ �| {z }
prior weight

· ↵

↵+ �| {z }
prior mean

For any fixed prior Beta(↵,�), as n increases, the sample weight

increases to 1 and prior weight decreases to 0.

The interval from the lower-0.05 point to the upper-0.05 point of

the Beta(S + ↵, n � S + �) posterior distribution forms a 90%

Bayesian credible interval for p.
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