S&DS 242/542: Theory of Statistics

Lecture 17: Bayesian Inference |



Bayesian inference

, 1D : :
Given data Xi,..., X, ~ f(x| @) from a parametric model, we've

discussed two approaches for estimating the parameter 6:
» Method-of-moments
» Maximum likelihood

We developed tools to study the sampling distributions of these
estimators for large n and to construct confidence intervals for 6.

All of our discussion has treated 6 as an unknown but non-random
parameter, which describes the distribution of our data. This is
called the frequentist paradigm of statistical inference.

In this lecture, we introduce the Bayesian paradigm, where 6 is
also modeled as random. Bayesian inference starts with our prior
belief about €, and updates this belief based on observed data.



Prior and posterior distributions



Conditional and marginal distributions

If X and Y have joint PDF or PMF fx y(x, y), then the marginal
distribution of X is given by the PDF or PMF

fx(x):/J;fX,y(x,y)dy, ()= Fy(xy)
yey

where ) is the domain of possible values for ). This describes the
probability distribution of X alone, marginalizing over all possible
values of Y.

The conditional distribution of Y given X = x is then defined by
the PDF or PMF

Ay ) = 20

This describes the distribution of Y after observing X = x.



Prior distribution and likelihood

In Bayesian inference, the unknown parameter © is modeled as a
random variable, with a probability distribution

© ~ fo(6)

called its prior distribution. This represents our prior belief about
the value of ©, before observing any data.

The parametric model or likelihood function describing the
distribution of our data X = (X1, ..., X,) is then interpreted as a
conditional distribution of X given ©, which we now write as

X ~ fxjo(x | 0)

(In previous lectures, we wrote this simply as f(x | 0).)



Marginal distribution of the data

This defines a joint probability distribution over both the
parameter © and the observed data X, with joint PDF/PMF

fx.o(x,0) = fxje(x | 0)fo(0)

Under this joint distribution, the marginal distribution of © is
simply the prior fo(6). The marginal distribution of the data X is!

u(x) = / fo(x.0)d6 = / o (x | 0)fo(0)d0

This represents the probability distribution for our observed data
X, if we assume © is also random and marginalize over its
randomness.

1If © is discrete, then this integral should be replaced by a sum.



Posterior distribution of the parameter

Bayesian inference is based upon the conditional distribution of the
parameter © given the data X. This conditional distribution is

fxo(x.0) _ fxolx | 0)fo(f)
fx(x) fx(X)

This is called the posterior distribution of ©: It represents our
knowledge about the parameter © after observing X.

foix (0| x) =

We often summarize the preceding equation simply as

fox (6 | x) o fxje(x | 0)fe(0)
Posterior o< Likelihood x Prior

where the symbol o hides the proportionality factor 1/fx(x) which
does not depend on 6.



Example: Uniform prior for a Bernoulli proportion

Let X1,...,Xp 0 Bernoulli(p). Suppose p is unknown, and we
model it as random with prior P ~ Uniform(0, 1). To derive the
posterior:
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Example: Uniform prior for a Bernoulli proportion
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Example: Uniform prior for a Bernoulli proportion

We computed explicitly the marginal distribution fx(x), but this
was not actually necessary to derive the posterior distribution.
Indeed, omitting factors not depending on p,

feix(p | x) o< fxp(x | p)fe(p) o< p*(1 — p)"*
This means the PDF of the posterior distribution of P has the form

n—s

fex(p | x) = C(lx) p°(1—p)

where the proportionality constant C(x) must be the unique value
that makes this PDF integrate to 1 over p € (0,1). So C(x) is the
normalizing constant for the Beta(s + 1, n — s + 1) distribution,
and the posterior distribution must be Beta(s + 1,n — s+ 1).



Example: Beta prior for a Bernoulli proportion

Let X1,..., X, 0 Bernoulli(p). We model p as random with prior
P ~ Beta(a, /3). To derive the posterior distribution:
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Example: Gamma prior in the Poisson model

Let Xi,..., X, 0 Poisson(A). We model A as random with prior
A ~ Gamma(a, ). To derive the posterior distribution:
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Conjugate priors

A family of priors fg(6) are called conjugate priors for a
parametric model fxjg(x | 0) if the resulting posteriors fgx (6 | x)
have the same parametric form as the priors. So

» Beta(a, ) are conjugate priors for the model Bernoulli(p)
» Gamma(a, ) are conjugate priors for the model Poisson(\)

Conjugate priors exist for many simple parametric models, and are
mathematically/computationally convenient because they lead to
posteriors that are common distributions and easy to compute.

This convenience does not necessarily imply desirable statistical
properties — for example, conjugate priors are typically light-tailed
distributions that bias posterior inferences towards the prior mean.
Non-conjugate (in particular heavier-tailed) priors are also often
used to yield posterior inferences that are more robust to the choice
of the prior, even if this requires more intensive computation.



Example: Normal prior for a normal mean

11D . .
Let X1,..., X, ~ N(6, %) where for convenience we parametrize

the model by the precision £ = % instead of the variance o2.

1).

gprior

Suppose £ is known, 6 is unknown with prior © ~ N (gprior,
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Example: Normal prior for a normal mean
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Example: Normal prior for a normal variance

Let X1,..., X, N6, ) Suppose 6 is known, & is unknown
with prior = ~ Gamma( ,ﬁ)
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Point estimates and credible intervals



Bayesian point estimates and credible intervals

In many applications, we may want a single estimate 6 and an
interval that quantifies our uncertainty about 6, instead of a full
posterior distribution.

The posterior mean and posterior mode are the mean and mode
of the posterior distribution of ©, and either may be used as a
Bayesian estimate 6 for 6.

A Bayesian credible interval with coverage 1 — « is an interval
I(X) that contains © with posterior probability 1 — a:

PlOcI(X) | X=x]=1—-«

where the probability is over ©, instead of X as in the frequentist
confidence interval. A common choice is the interval from the
lower-/2 to upper-a/2 point of the posterior distribution of ©.
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Example: Beta prior for a Bernoulli proportion

Let X1, ..., X, 2 Bernoulli(p), with prior P ~ Beta(a, 8). Recall
that the posterior distribution is

P~ Beta(S+a,n—S+f), S=X1+...+ X,

The posterior mean is

S+«

p:n+a+ﬂ

This is different from the MLE/MoM-estimator X = % and is
biased towards the prior mean.

One interpretation is that p is the sample mean as if we had

observed — a priori — « heads and S tails before seeing our data.

This gives an interpretation also for the Beta(a, 3) prior.
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Example: Beta prior for a Bernoulli proportion

An alternative interpretation is that p is a weighted average of the
sample mean and prior mean,

b S+a n § a—+p
n

Q@
n+a+pB  nt+a+p n+a+f a+p
—_—— ~~ —_———— ——
sample weight sample mean prior weight  prior mean
For any fixed prior Beta(a, ), as n increases, the sample weight
increases to 1 and prior weight decreases to 0.

The interval from the lower-0.05 point to the upper-0.05 point of
the Beta(S 4+ o, n — S + [3) posterior distribution forms a 90%
Bayesian credible interval for p.
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