S&DS 242/542: Theory of Statistics

Lecture 18: Bayesian Inference Il



Bayesian inference

Given data X ~ f(x | 6) from a parametric model, Bayesian
inference models 6 as random, with a prior distribution

© ~ fo(0)
The main object of interest is then the posterior distribution
fox (0| x)

representing our updated belief about ©, after having observed
that the data is X = x.

This may be computed from

fox (0 | x) o< fxje(x | 9)@

posterior likelihood prior




Bayesian point estimates and credible intervals

Either the mean or mode of the posterior distribution is commonly
used as a Bayesian estimate 6 for 6.

The interval /(X) from the lower-a/2 to upper-a/2 point of the
posterior distribution forms a Bayesian credible interval with
coverage 1 — . This ensures:

P[OcI(X)|X=x]=1—a

where the probability is over the posterior distribution of ©.



Example: Beta prior for a Bernoulli proportion

Let X1,...,X, 0 Bernoulli(p), with prior P ~ Beta(«, 8). We
computed the posterior distribution to be

P ~ Beta(S+a, n— S + f3), S=X1+...+ X,

The posterior mean is

. S+a
n+a+ g’
a sample average as if we had observed — a priori — « heads and
B tails before seeing our data. It is also a weighted average
R n S a—+p o
p = — . —_ .
n+a+p n n+a+p a+p
~~ —_———— ——
sample weight Sample mean prior weight  prior mean

The lower-0.05 point to upper-0.05 point of Beta(S +a,n— S+ 3)
forms a 90% Bayesian credible interval for p.



Example: Gamma prior for the Poisson model

Let X1,..., X, 0 Poisson(A), with prior A ~ Gamma(a, §). We
computed the posterior distribution to be

A ~ Gamma(S + a, n+ ), S=Xi+...+ X,

The posterior mean is
S+a

n+p3’
again a sample average as if we had observed — a priori — 3
additional samples with sum «. It is also a weighted average

\=

= ; +5in 5
~~ ~— =

sample weight sample mean prior weight prior mean

The lower-0.05 to upper-0.05 points of Gamma(S + a, n + )
forms a 90% Bayesian credible interval for .



Example: Normal prior for a normal mean

Let X1,..., X, 0 N(6,1/€), where £ is known and 6 has prior
© ~ N (fipriors 1/Eprior). We computed the posterior distribution as

O~ N(,Uposta 1/5130813)

where §post = nE + Eprior, and the posterior mean takes a form

Lpost = 5+ (gprior/g)ﬂprior
e n+ (gprior/f) ’

This is as if we had observed &pio; /€ additional samples with mean
Hprior, and is again a weighted average

S=X1+...+ X,

pos n + (fprior/g) n n + (gprior/é) w
— N— ——"prior mean

sample mean

sample weight prior weight

The interval fipost £ 2(%0%) /Spﬁ is a 90% credible interval for 6.



Bayesian vs. frequentist coverage



Bayesian credible intervals vs. confidence intervals

A Bayesian credible interval /(X) with coverage 1 — « is an interval
which guarantees

PlOcI(X)|X=x]=1—-a

Here © is random, and 1 — « is the probability of © € /(x) over
the randomness of ©, given the observed data X = x.

A frequentist confidence interval /(X) with coverage 1 — «v is an
interval which guarantees

Po[0 € I(X)] =1 a

The parameter 6 is fixed, and 1 — « is the probability of 6 € /(X)
over the randomness of X ~ f(x | 0).



Example: Intervals for a normal model

Suppose Xi,..., X, 0 N(0,1), where the variance is known and
equal to 1.

In a frequentist analysis we might estimate 6 by its MLE 6=X.

Then Varg[X] = 1, and a frequentist confidence interval for 6
would be
X+ — . /2
\/ﬁ

This guarantees, for any fixed value of the true parameter 6,

_1
Pploe X+ —— .2/ =1 ¢
f

n

where Py is over the randomness of Xi,..., X, 0 N(0,1).



Example: Intervals for a normal model

In a Bayesian analysis, suppose we choose the prior distribution
© ~ N(0,1/Eprior). The posterior distribution is then

O~ N(,Ufpostv 1/€post)

where
—X :f =n —l—é ior -
n +§ ior ) post prior

A Bayesian credible interval would be

Hpost =

L S V)
n+ fprior N + fprior

> This is centered at the posterior mean, which shrinks X
towards the prior mean of 0.

» Its width is narrower than the frequentist interval.




Example: Intervals for a normal model

This posterior credible interval has the guarantee, for any

realization of the data x = (xi, ..., x,) with mean X,
n 1
P|Oc X+ ) X =x|=1-a
n-+ é.prior N + gprior

where P is over the posterior distribution of © given X = x.

Q: Suppose there is a fixed true parameter §. Does this Bayesian
credible interval cover 6 with probability 1 — «, in the frequentist
sense (over the randomness of the data X)?

A: Not necessarily, and this coverage probability depends on the
value of 6.



Example: Intervals for a normal model

The coverage probability is, in the frequentist sense,

Py [0 e— X+ = -z(a/z)]

n + gprior \/ n + éprior
[ v, n—+ gprior 1 (a/2)
’ n ( v N + gprior

— Py | /A(X — 0) € g 4 [ Sorior  (a2)
" /n n

L =Z




Example: Intervals for a normal model

When X1, ..., Xy 2 N(0,1), Z = \/n(X — 0) ~ N(0,1). So the
coverage probability is

Sy [T o
ﬁ n

» If 0 is far from 0 (the mean of our assumed prior distribution),
then this coverage probability can be smaller than 1 — «, and
it approaches 0 as 6 — oc.

» On the other hand, if # = 0, then this coverage probability is

larger than 1 — « because /(1 + Eprior)/n > 1.

So the interval has under-coverage when 6 is far from the prior
mean of 0, and over-coverage when @ is close to the prior mean.

Pz n(0,1)
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The Bayesian coverage guarantee

To summarize, a Bayesian credible interval does not guarantee
frequentist coverage for each fixed . However, it instead
guarantees coverage in an average sense:

Since P[© € /(X) | X =x] =1 — a for any possible realization of
the data X = x, this guarantee holds also unconditionally, i.e.

P[Oc(X)]=1-a

This probability is over the joint distribution of © and X.
The marginal distribution of © is the prior distribution fg(6), so we
may write this in turn as

1—a:P[@€l(X)]:/IP’[@€ I(X) | © = 6] fo(0) df

- / Pyl € 1(X)] fo(6) dO
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The Bayesian coverage guarantee

1-a= /Pg[e € 1(X)] fo(0) d6

Thus the frequentist coverage probability, when averaged over
values of 0 according to the prior, is guaranteed to be 1 — a.

» Suppose we conduct many experiments, where the parameter
0 is the same in all experiments. If we compute a 90%
frequentist confidence interval in each experiment, then
roughly 90% of these intervals would cover 6. A similar
guarantee may not hold for a 90% Bayesian credible interval.

» Suppose instead that 6 is different in each experiment, and its
distribution across experiments is correctly described by our
Bayesian prior fg(6). If we compute a 90% Bayesian credible
interval in each experiment using this prior, then roughly 90%
of these intervals would cover the corresponding values of 6.
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Influence of the prior



Uninformative and improper priors

Sometimes we wish to use the Bayesian formalism, but to carry out
an objective analysis without imposing prior knowledge.

This may be achieved by using an uninformative prior that
minimizes its influence over the posterior mode or mean.

Example: Consider Xi,..., X, 0 Poisson(A), with conjugate prior
N ~ Gamma(a, (), posterior Gamma(X1 + ...+ X, + a, n+ f3).

The posterior mean is

Xi+...+ X, +a

A=
n+p

which may be interpreted as observing — a priori — (3 values that
sum to «. The prior is less informative for smaller «, 8.
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Uninformative and improper priors

Taking this idea to the limit, we may set « = 3 = 0. The PDF of
Gamma(a, ) is fa(A) ox A* e P} so o = 3 = 0 corresponds to

fa(\) oc A7 for A >0

This prior Gamma(0, 0) is not an actual probability distribution,
because fooo A1d\ = oo so that it is impossible to multiply by a
proportionality constant to make the PDF integrate to 1. Such a
prior is called an improper prior.

It is sometimes still possible to formally carry out Bayesian
inference, using the rule posterior o likelihood X prior.

The posterior distribution would be Gamma(Xy + ... + Xj, n),
which is proper as long as Xi + ...+ X, > 0. The posterior mean
would be X = %(Xl + ...+ X5) which coincides with the MLE.
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Example: Normal model

Suppose Xi, ..., X, 0 N (6, 1) with prior © ~ N(0,1/&prior).

Recall the posterior is

1
n+ fprior

n —_

N (Mposta T Eoror
prior

)7 Hpost =
and a Bayesian credible interval with coverage 1 — « is

IX)=—" % LR V)

= +
n—+ gprior v+ gprior
_ gprior 92

The prior is improper when &pior = 0. Since fg(f) xe™ 2 7,
the choice &prior = 0 corresponds to

fo(f) < 1ford e R

For this choice, the posterior is proper, fipost = )_(,_and 1(X)
coincides with the frequentist confidence interval X & ﬁz(a/z).
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Normal approximation for large n

Even if we pick a proper prior with &,rior > 0, note that

no S nooc 1
-7 X, I(X)= X+ - 2o/2)
Hrpost n—+ gprior ( ) n-+ gprior m

approach X and the frequentist confidence interval as n — co.
The influence of the prior diminishes, and the mean and shape of
the posterior become increasingly determined by the data alone.

This is true more generally for parametric models satisfying mild
regularity conditions: For large n, the posterior distribution is

approximately
A~ 1
(o1
nl(6)
where 0 is the MLE and /() is the Fisher information.
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Normal approximation for large n

Rationale: Let X1, ..., X, 2 f(x | ), with log-likelihood

n
0a(0) = 3 log £(x; | 6)
i=1
For a prior fg(6), the posterior distribution is
fox(0 | X1, ., xn) o fxjo(x1, .- ., xn | 0)fa(0) = "D fg(0)
Taylor expand £,(#) around the MLE :
(n(0) & £n(8) + (0 — 0)£,(8) + %(9 — 0)%en(8)

> /' (A) =0, because A maximizes £,.
» For large n, —%6’,;(@) ~ 1(0) (the Fisher information)
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Normal approximation for large n

Thus 1

0n(0) ~ £,(0) — 50— 0)? - nl(0).
Since £,(f) depends only on x and not on 6, we may absorb etn(0)
into the proportionality constant, so

forx (0 | x1, ..., xn) o exp (—;(9 — ). nI(é)) fo(0)

For large n, exp(—3(0 — 0)2 - nl(0)) is nearly 0 unless 6 — 0 is of
order 1/4/n. In this region of 6, the prior density fg(0) is
approximately constant and equal to f@(é). Absorbing this
constant also into the proportionality factor,

1 n ~
forx (0 | x1, ..., xn) o< exp (—2(0 — ). nl(9)>

This is a normal distribution with mean # and variance —L-

nl(6)"
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Asymptotic efficiency of Bayes estimates

This argument shows that, for large n,

» The posterior distribution is approximately normal around the
MLE @, so both the posterior mean and mode are
approximately equal to 6.

» Both estimates, like the MLE, are asymptotically efficient
estimators of 6.

» The Bayesian credible interval with coverage 1 — «c is

approximately 6 + ﬁ - 2{¢/2) which is exactly the
n

frequentist confidence interval based on the MLE.

In this sense, frequentist and Bayesian inferences will coincide in
the limit n — oo, fixing the prior fo(#).
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Posterior approximations and Gibbs sampling



Posterior approximation via sampling

Moving away from conjugate priors and textbook examples, the
posterior distribution fgx(6 | x) may not be a simple known
distribution, and the posterior mean and other posterior averages
may be difficult to compute.

When this problem arises, a general method for numerically
approximating posterior averages is to to devise an algorithm that
draws random samples

oM, 02 9B .~ fox(6 | x)

)

Posterior averages are then approximated by Monte Carlo averages
over these random samples,

1 T
E[f(©) | X =x]~ = (01
t=1

al
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Gibbs sampling

One common type of example is a model with multiple parameters
0 = (61,...,0k) € RX, where f(6; | 6_;,x) has a simple form for
each parameter 6;, but the full posterior fgx (6 | x) does not.

An algorithm that samples from the posterior distribution in these
settings is Gibbs sampling:
1. Initialize 9© = (67, ..., 6{) arbitrarily.
2. Fort=1,2,3,...
> Pick a coordinate j € {1,..., k} uniformly at random
> Sample 01 ~ £(0; | 0“7V %)
» Replace the j™ coordinate of (t—1) by Hft), to get (1)
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Gibbs sampling

Theorem

The parameters 0V 0 . returned by Gibbs sampling form a
Markov chain, and the posterior distribution fgx(0 | x) is a
stationary distribution of this Markov chain.

This means that if 8(t=1) were actually distributed as fox (0 | x),
then A(*) would remain distributed as fox (0 | x).

Under mild conditions, the samples will satisfy the convergence in
distribution
6(t) — fox(0 [ x) ast— oo

i.e. () will be approximately distributed according to the true
posterior distribution fgx (0 | x) for large values of t.
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Example: Gibbs sampling in the normal model

Consider Xi,..., X, ~N(0,1/¢), where both (6,&) are unknown.
Let us take an independent prior

O~ N(Mpriom l/fprior)a =~ Gamma(a7 /8)
The joint posterior fg =x(0,& | x1,...,x,) has a complicated form.
However, given = = £, the posterior for 8 is simple and given by

~ 2721 Xi + (gprior/g)uprior 1 >
O~N ( n—+ (gprior/g) ’ n§ + gprior

Similarly, given © = 0, the posterior for £ is simple and given by

n . _0)2
= ~ Gamma <a—|—'27, 5+Ei::[(’2<:9)>

(See Lecture 17 for both of these calculations.)
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Example: Gibbs sampling in the normal model

Gibbs sampling in this model takes the form:
> Initialize (/(®), £()) arbitrarily.
> Fort=1,2,3,...
» Choose 6 or £ uniformly at random
P If 0 is chosen, sample 0 from its posterior given f(t_l), and
set (9(t)7§(t)) = (9(t)7§(t—1))
> If £ is chosen, sample £(t) from its posterior given #(t=1) and
set (0(),£(8)) = (p(t=1) ¢(0))
This produces pairs (81, M) (62, ¢()), ... that form a Markov
chain converging in distribution to the joint posterior

f@,E|X(97£ | Xlyew- 7Xn)
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