S&DS 242/542: Theory of Statistics

Lecture 19: Parameter estimation in misspecified models



“All models are wrong, but some are useful.”

— George Box, 1976



Model misspecification

In our examples thus far, we typically started with the assumption
X1,y Xn 0 f(x | 0). Here f(x | @) plays two different roles:
» It describes the model we choose to fit to the data

» It describes the true distribution of the data

In reality these can be different, for various reasons:

» The true distribution of the data is unknown, and any model
we fit is only an approximation to the truth

» The data is well-described by a complex model, but we choose
to fit a simpler model that has more interpretable parameters

> We fit a model that is only intended for black-box prediction,
rather than accurately describing the data-generating process
Q: How may we interpret the fitted parameter  and model f(x | §)
if f(x | 8) does not truly describe the distribution of the data?



Interpreting estimates in misspecified models

Suppose (X1, Y1), .., (Xa, Ya) € R? are covariate-response pairs,
which are IID with some unknown distribution g(x, y).

We fit a linear regression model Y ~ [y + 51X with parameters
B = (Bo, f1) using least squares:

n
~ A

(o) = rgrmin =30+ 5%~ v

Even if the true relation between X and Y is not linear, we may fit
this model and interpret (Bo,ﬁAl) as representing the “best linear
predictor” for Y based on X. For large n, we expect (30,51) to be
close to the minimizers of the population squared error

argminEx y)~g[(Bo + 1X — Y)2]
Bo,B1



Interpreting estimates in misspecified models

Suppose Xi,..., X, 0 g(x), for an unknown distribution g(x).

We fit a model f(x | §) with parameters § € R¥ using the method

of moments. By definition, the estimated parameters 0 are those
for which

1 e I~ ok
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This may be understood as estimating the distribution f(x | 6)
within our model that matches g(x) in its first k moments.

For large n, we expect 6 to be close to the value of 6 such that

Eo[X] = Exg[X], ..., Eg[X¥] =Exg[X"]



Interpreting estimates in misspecified models
Suppose Xi,..., X, 0 g(x), for an unknown distribution g(x).
We fit a model f(x | €) over parameters 6 € Q using maximum
likelihood. What is the interpretation of 67

Theorem
Let Dx1,(g(x) || f(x | 0)) be the Kullback-Leibler (KL) divergence
from f(x | 0) to g(x), and suppose that Al

be)
6 Dii(g(x) || F(x | 0)) J

has a unique minimizer 0* € Q. Then, under regularity conditions
for f(x | 8), the MLE 6 converges to 0* in probability as n — oc.

For large n, the MLE estimates the “KL projection” of the true
distribution g(x) onto our model {f(x | 0): 6 € Q}.



Kullback-Leibler divergence



Kullback-Leibler divergence

For two discrete distributions with PMFs f and g on a sample
space X, the Kullback-Leibler (KL) divergence from f to g is

DKL(ng)—X;(g( ) log )

For two continuous distributions with PDFs f and g on the real
line, the KL divergence from f to g is similarly

> g(x)
D f)= [ d
kL(g]lf) /Oog(x) %8 71y &
In both cases, this may be written as an expectation

g(X)
f(X)

Dri(g]1F) = Eg [Iog } — E,[log g(X)] — Eglog f(X)]

where [E, indicates expectation with respect to X ~ g(x).



KL divergence between normal distributions

Let f = N(po,02) and g = N (1, 02) with common variance o2

To compute Dk, ( ng
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KL divergence between normal distributions
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KL divergence between Bernoulli distributions

Let f = Bernoulli(p), g = Bernoulli(g). To compute Dkr,(g||f):
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Note that this expression is not symmetric in (p, q), so

Dk1(gllIf) # Dxu(flg)-



KL divergence between Bernoulli distributions

For f = Bernoulli(p) and g = Bernoulli(q), we have

q l1-gq
DkL(gl|f) = qlog; +(1—q)log 1 —

For p close to g, this may be approximated by Taylor expansion:
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KL divergence between Bernoulli distributions
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KL divergence between Binomial distributions

Let f = Binomial(n, p) and g = Binomial(n, g). Then

log 5’;8 = log <<Z> g(1—-q)"> / (g) p*(1 - P)”‘X>

q l-q
= xlog = —x)I
xogp+(n x)og1

Applying E;[X] = nq,

Dk1(gl/f) = Eg[X] Iog% + (n — Eg[X]) log 1 —q

1_
=n qlogg+(1—q)|og q
p 1-p

= n x Dkr,(Bernoulli(q)|| Bernoulli(p))

(p—q)?
2q9(1-q)"

For p close to g, this is Dxr(g||/f) = n x
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Properties of KL divergence

Dxk1.(g||f) is an information-theoretic measure of discrepancy
between g and f. In general, Dki,(f||g) # DxL(gl|f)-

It satisfies the following basic properties:
> If f = g, then Dxr,(gl|f) = 0 because log gg )) =0 for all x.
» Dkr(g||f) > 0 for any f and g. This follows from applying
Jensen's inequality to the convex function — log x:
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KL divergence within a parametric model

Consider a parametric model f(x | ) and two parameters
0,01 € R. Then

DxL(f(x | 60) || f(x | 61)) = Egy[log (X | 6o)] — Eg,[log f(X | 01)]
—(00) nm

Fixing 6o, let L(6) = Eg,[log f(X | 8)] be the population
log-likelihood function when the true parameter is 8y. If 6y and 61
are close to each other, then we may apply the Taylor expansion

L(81) % L(fo) + (6 — B0)L'(F) + 5(61 — 60)°L"(60)

Recall that
> ['(6p) = 0 because 6y maximizes L(6)
» L"(0p) = —1(6p), the Fisher information at 6
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KL divergence within a parametric model

Thus, for parameters 6y and 01 close to each other,

Dia(7x [ 60) 1 £0x [ 02)) = "0 01— o)

The KL divergence is approximately the squared difference between
the parameter values, scaled by one-half times the Fisher
information.

This gives another interpretation of the Fisher information:

It relates the KL divergence — an information-theoretic measure of
the discrepancy between f(x | fp) and f(x | 1) — to the squared
difference of the model parameters.
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The MLE in misspecified models



Interpretation of the MLE

Suppose Xi,..., X, 0 g(x), for an unknown distribution g(x).

We fit a model f(x | #) over parameters 6 € Q using maximum
likelihood.

Theorem
Let Dxr1,(g(x) || f(x | 8)) be the Kullback-Leibler (KL) divergence
from f(x | 0) to g(x), and suppose that

0 — Dxr(g(x) [ f(x|0))

has a unique minimizer 6* € Q. Then, under regularity conditions
for f(x | 0), the MLE 6 converges to 0" in probability as n — oc.
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Proof sketch

By definition, the MLE 0 maximizes
L) = lzn:lo £(X: | 0)
n " i=1 © ’

By the Law of Large Numbers, as n — oo, for each 6 € Q this
converges in probability to the expected log-likelihood function

L(0) = Egllog f(X | 0)]

Here, g is now the expectation with respect to the true
distribution X ~ g(x).

In Lecture 14, we assumed that g(x) = f(x | 8*) for some true
parameter 0* € Q. Then L(0) is maximized at 6%, and this
explained consistency of the MLE.
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Proof sketch

If g(x) does not belong to our model {f(x | @) : 60 € Q}, let us
write

L(6) = Eg[log F(X | 0)]
— Eg[log g(X)] — Eg [Iog ff)g)‘()e)}
= Egllog g(X)] — Dxr(g(x) [| f(x | 9))

The first term Eg[log g(X)] does not depend on 6. Thus the
maximizer of L(6) is the minimizer of Dxy,(g(x) || f(x | #)), which
is assumed in the theorem to be a unique value 6* € Q. So we

expect, as n — 0o,
0 — 0*
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Example: MLE in a misspecified Poisson model

Suppose we fit the model Poisson()\) to observations Xi, ..., Xn
whose true distribution is g(x).
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Example: MLE in a misspecified Poisson model

St 0’ lex)l(\(x/,\))
Mo £ Do (G0 16GD) 5 N+ E 0

So the MLE ) satisfies
A = A = Eg[X]

in probability as n — oco. This coincides with the direct conclusion
using the Law of Large Numbers and the explicit form A= X.
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Example: Asymptotic variance of the MLE
Continuing this example, since X = X, by the CLT we have
V(A =A%) = N(0, Varg[X])
in distribution as n — co. So Var[}] ~ Var%[x] for large n.

If we estimate this variance based on the Fisher information in our
assumed Poisson(A) model, we would obtain an incorrect estimate:

9 AN X 1
I(\) = Var) [(“))\ log eX|] = Var) [/\ — 1] =

Thus, since A & \* = Eg[X] for large n, the usual plug-in estimate
for Var[A] would be

13N BN Varlx]
nl(A) n n n
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Uncertainty quantification in misspecified models

» It is often meaningful to fit a parametric model f(x | 0) that
is only an approximation to the true distribution of data.

» If maximum likelihood is used to fit the model, then 0 may be
understood as estimating a parameter 6* representing the KL

projection of the data distribution onto the assumed model.

» However Var[HA] is, in general, not given by n,(le*).

_1
nl()
may be incorrect in a misspecified model, and the confidence
interval 0 + z(@/2) /nlié) may have incorrect coverage for 6*.

Thus the usual model-based estimate of Var[f] given by
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