
S&DS 242/542: Theory of Statistics
Lecture 19: Parameter estimation in misspecified models



“All models are wrong, but some are useful.”

— George Box, 1976
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Model misspecification

In our examples thus far, we typically started with the assumption

X1, . . . ,Xn
IID⇠ f (x | ✓). Here f (x | ✓) plays two di↵erent roles:

I It describes the model we choose to fit to the data

I It describes the true distribution of the data

In reality these can be di↵erent, for various reasons:

I The true distribution of the data is unknown, and any model

we fit is only an approximation to the truth

I The data is well-described by a complex model, but we choose

to fit a simpler model that has more interpretable parameters

I We fit a model that is only intended for black-box prediction,

rather than accurately describing the data-generating process

Q: How may we interpret the fitted parameter ✓̂ and model f (x | ✓̂)
if f (x | ✓) does not truly describe the distribution of the data?
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Interpreting estimates in misspecified models

Suppose (X1,Y1), . . . , (Xn,Yn) 2 R2
are covariate-response pairs,

which are IID with some unknown distribution g(x , y).

We fit a linear regression model Y ⇠ �0 + �1X with parameters

� = (�0,�1) using least squares:

(�̂0, �̂1) = argmin

�0,�1

1

n

nX

i=1

(�0 + �1Xi � Yi )
2

Even if the true relation between X and Y is not linear, we may fit

this model and interpret (�̂0, �̂1) as representing the “best linear

predictor” for Y based on X . For large n, we expect (�̂0, �̂1) to be

close to the minimizers of the population squared error

argmin

�0,�1

E(X ,Y )⇠g [(�0 + �1X � Y )
2
]
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Interpreting estimates in misspecified models

Suppose X1, . . . ,Xn
IID⇠ g(x), for an unknown distribution g(x).

We fit a model f (x | ✓) with parameters ✓ 2 Rk
using the method

of moments. By definition, the estimated parameters ✓̂ are those

for which

E✓̂[X ] =
1

n

nX

i=1

Xi , . . . , E✓̂[X
k
] =

1

n

nX

i=1

X k
i

This may be understood as estimating the distribution f (x | ✓)
within our model that matches g(x) in its first k moments.

For large n, we expect ✓̂ to be close to the value of ✓ such that

E✓[X ] = EX⇠g [X ], . . . , E✓[X
k
] = EX⇠g [X

k
]
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Interpreting estimates in misspecified models

Suppose X1, . . . ,Xn
IID⇠ g(x), for an unknown distribution g(x).

We fit a model f (x | ✓) over parameters ✓ 2 ⌦ using maximum

likelihood. What is the interpretation of ✓̂?

Theorem
Let DKL(g(x) k f (x | ✓)) be the Kullback-Leibler (KL) divergence
from f (x | ✓) to g(x), and suppose that

✓ 7! DKL(g(x) k f (x | ✓))

has a unique minimizer ✓⇤ 2 ⌦. Then, under regularity conditions
for f (x | ✓), the MLE ✓̂ converges to ✓⇤ in probability as n ! 1.

For large n, the MLE estimates the “KL projection” of the true

distribution g(x) onto our model {f (x | ✓) : ✓ 2 ⌦}.
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Kullback-Leibler divergence



Kullback-Leibler divergence

For two discrete distributions with PMFs f and g on a sample

space X , the Kullback-Leibler (KL) divergence from f to g is

DKL(gkf ) =
X

x2X
g(x) log

g(x)

f (x)

For two continuous distributions with PDFs f and g on the real

line, the KL divergence from f to g is similarly

DKL(gkf ) =
Z 1

�1
g(x) log

g(x)

f (x)
dx

In both cases, this may be written as an expectation

DKL(gkf ) = Eg


log

g(X )

f (X )

�
= Eg [log g(X )]� Eg [log f (X )]

where Eg indicates expectation with respect to X ⇠ g(x).
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KL divergence between normal distributions

Let f = N (µ0,�2
) and g = N (µ1,�2

) with common variance �2
.

To compute DKL(gkf ):
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KL divergence between normal distributions
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KL divergence between Bernoulli distributions

Let f = Bernoulli(p), g = Bernoulli(q). To compute DKL(gkf ):

Note that this expression is not symmetric in (p, q), so
DKL(gkf ) 6= DKL(f kg).
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KL divergence between Bernoulli distributions

For f = Bernoulli(p) and g = Bernoulli(q), we have

DKL(gkf ) = q log
q

p
+ (1� q) log

1� q

1� p

For p close to q, this may be approximated by Taylor expansion:
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KL divergence between Bernoulli distributions
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KL divergence between Binomial distributions

Let f = Binomial(n, p) and g = Binomial(n, q). Then

log
g(x)

f (x)
= log

 ✓
n

x

◆
qx(1� q)n�x

,✓
n

x

◆
px(1� p)n�x

!

= x log
q

p
+ (n � x) log

1� q

1� p

Applying Eg [X ] = nq,

DKL(gkf ) = Eg [X ] log
q

p
+ (n � Eg [X ]) log

1� q

1� p

= n

✓
q log

q

p
+ (1� q) log

1� q

1� p

◆

= n ⇥ DKL(Bernoulli(q)kBernoulli(p))

For p close to q, this is DKL(gkf ) ⇡ n ⇥ (p�q)2

2q(1�q) .
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Properties of KL divergence

DKL(gkf ) is an information-theoretic measure of discrepancy

between g and f . In general, DKL(f kg) 6= DKL(gkf ).

It satisfies the following basic properties:

I If f = g , then DKL(gkf ) = 0 because log
g(x)
f (x) = 0 for all x .

I DKL(gkf ) � 0 for any f and g . This follows from applying

Jensen’s inequality to the convex function � log x :
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KL divergence within a parametric model

Consider a parametric model f (x | ✓) and two parameters

✓0, ✓1 2 R. Then

DKL(f (x | ✓0) k f (x | ✓1)) = E✓0 [log f (X | ✓0)]| {z }
=L(✓0)

�E✓0 [log f (X | ✓1)]| {z }
=L(✓1)

Fixing ✓0, let L(✓) = E✓0 [log f (X | ✓)] be the population

log-likelihood function when the true parameter is ✓0. If ✓0 and ✓1
are close to each other, then we may apply the Taylor expansion

L(✓1) ⇡ L(✓0) + (✓1 � ✓0)L
0
(✓0) +

1

2
(✓1 � ✓0)

2L00(✓0)

Recall that

I L0(✓0) = 0 because ✓0 maximizes L(✓)

I L00(✓0) = �I (✓0), the Fisher information at ✓0
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KL divergence within a parametric model

Thus, for parameters ✓0 and ✓1 close to each other,

DKL(f (x | ✓0) k f (x | ✓1)) ⇡
I (✓0)

2
(✓1 � ✓0)

2

The KL divergence is approximately the squared di↵erence between

the parameter values, scaled by one-half times the Fisher

information.

This gives another interpretation of the Fisher information:

It relates the KL divergence — an information-theoretic measure of

the discrepancy between f (x | ✓0) and f (x | ✓1) — to the squared

di↵erence of the model parameters.

15



The MLE in misspecified models



Interpretation of the MLE

Suppose X1, . . . ,Xn
IID⇠ g(x), for an unknown distribution g(x).

We fit a model f (x | ✓) over parameters ✓ 2 ⌦ using maximum

likelihood.

Theorem
Let DKL(g(x) k f (x | ✓)) be the Kullback-Leibler (KL) divergence
from f (x | ✓) to g(x), and suppose that

✓ 7! DKL(g(x) k f (x | ✓))

has a unique minimizer ✓⇤ 2 ⌦. Then, under regularity conditions
for f (x | ✓), the MLE ✓̂ converges to ✓⇤ in probability as n ! 1.
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Proof sketch

By definition, the MLE ✓̂ maximizes

1

n
`n(✓) =

1

n

nX

i=1

log f (Xi | ✓)

By the Law of Large Numbers, as n ! 1, for each ✓ 2 ⌦ this

converges in probability to the expected log-likelihood function

L(✓) = Eg [log f (X | ✓)]

Here, Eg is now the expectation with respect to the true

distribution X ⇠ g(x).

In Lecture 14, we assumed that g(x) = f (x | ✓⇤) for some true

parameter ✓⇤ 2 ⌦. Then L(✓) is maximized at ✓⇤, and this

explained consistency of the MLE.
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Proof sketch

If g(x) does not belong to our model {f (x | ✓) : ✓ 2 ⌦}, let us
write

L(✓) = Eg [log f (X | ✓)]

= Eg [log g(X )]� Eg


log

g(X )

f (X | ✓)

�

= Eg [log g(X )]� DKL(g(x) k f (x | ✓))

The first term Eg [log g(X )] does not depend on ✓. Thus the
maximizer of L(✓) is the minimizer of DKL(g(x) k f (x | ✓)), which
is assumed in the theorem to be a unique value ✓⇤ 2 ⌦. So we

expect, as n ! 1,

✓̂ ! ✓⇤
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Example: MLE in a misspecified Poisson model

Suppose we fit the model Poisson(�) to observations X1, . . . ,Xn

whose true distribution is g(x).
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Example: MLE in a misspecified Poisson model

So the MLE �̂ satisfies

�̂ ! �⇤
= Eg [X ]

in probability as n ! 1. This coincides with the direct conclusion

using the Law of Large Numbers and the explicit form �̂ = X̄ .
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Example: Asymptotic variance of the MLE

Continuing this example, since �̂ = X̄ , by the CLT we have

p
n (�̂� �⇤

) ! N (0,Varg [X ])

in distribution as n ! 1. So Var[�̂] ⇡ Varg [X ]
n for large n.

If we estimate this variance based on the Fisher information in our

assumed Poisson(�) model, we would obtain an incorrect estimate:

I (�) = Var�


@

@�
log

e���X

X !

�
= Var�


X

�
� 1

�
=

1

�

Thus, since �̂ ⇡ �⇤
= Eg [X ] for large n, the usual plug-in estimate

for Var[�̂] would be

1

nI (�̂)
=

�̂

n
⇡ �⇤

n
=

Eg [X ]

n
6= Varg [X ]

n
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Uncertainty quantification in misspecified models

I It is often meaningful to fit a parametric model f (x | ✓) that
is only an approximation to the true distribution of data.

I If maximum likelihood is used to fit the model, then ✓̂ may be

understood as estimating a parameter ✓⇤ representing the KL

projection of the data distribution onto the assumed model.

I However Var[✓̂] is, in general, not given by
1

nI (✓⇤) .

Thus the usual model-based estimate of Var[✓̂] given by
1

nI (✓̂)
may be incorrect in a misspecified model, and the confidence

interval ✓̂ ± z(↵/2)
q

1
nI (✓̂)

may have incorrect coverage for ✓⇤.
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