
S&DS 242/542: Theory of Statistics
Lecture 20: Uncertainty quantification using the bootstrap



What is the bootstrap?

The bootstrap (Efron, 1979) refers to a simulation-based
approach to quantify the uncertainty of statistical estimates.

It may be used to estimate the standard error of a statistic, or to
construct a confidence interval for an estimated parameter.

There are two common versions of the bootstrap: the parametric
bootstrap and the nonparametric bootstrap. We will discuss
both methods in this lecture.
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Bootstrap standard errors



Simulating the standard error

Typical question of interest: We fit a model f (x | ✓) to data
X1, . . . ,Xn. How can we estimate the standard error of ✓̂?

Previous lectures: Compute a theoretical distribution for ✓̂, or a
normal approximation for this distribution when n is large. Then
estimate the standard deviation of this distribution.

The simulation approach: Repeatedly simulate new data

X ⇤
1 , . . . ,X

⇤
n

In each simulation, compute ✓̂⇤ using X ⇤
1 , . . . ,X

⇤
n . Use the

standard deviation of ✓̂⇤ across simulations.

2



The bootstrap idea

We’d like to simulate
X ⇤
1 , . . . ,X

⇤
n

from the same distribution as our actual data X1, . . . ,Xn. The
challenge is that we can’t actually do this in practice, because we
don’t know the distribution of X1, . . . ,Xn to begin with.

The bootstrap idea: Simulate X ⇤
1 , . . . ,X

⇤
n from an estimate of the

true data distribution. The name comes from the old English
saying, “To pull oneself up by one’s bootstraps.”

The parametric and nonparametric bootstraps di↵er in how to
estimate the true data distribution, which determines how to
simulate X ⇤

1 , . . . ,X
⇤
n .

3



The parametric bootstrap

In the parametric bootstrap, we assume a parametric model

X1, . . . ,Xn
IID⇠ f (x | ✓). We estimate the parameter ✓ by ✓̂, and

simulate
X ⇤
1 , . . . ,X

⇤
n

IID⇠ f (x | ✓̂).

This is a “plug-in” principle, quite analogous to how we have been
using I (✓̂) in place of I (✓) to estimate the variance of the MLE in
parametric models.
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Example: Parametric bootstrap for the Poisson MLE

Numbers of alpha particles emitted by a sample of Americium-241
in 10-second intervals (Rice Chapter 8):
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Example: Parametric bootstrap for the Poisson MLE

Fitting a Poisson(�) model to this data, the MLE is �̂ = X̄ = 8.37.
What is the standard error of this estimate?

Using asymptotic theory (either by CLT or Fisher information):

p
n(�̂� �) ! N (0,�).

We can estimate the standard error as
p
8.37/n = 0.083.

Using the parametric bootstrap: Repeatedly simulate

X ⇤
1 , . . . ,X

⇤
n

IID⇠ Poisson(8.37),

compute �̂⇤ = 1
n (X

⇤
1 + . . .+ X ⇤

n ) for each simulation, and compute

the empirical standard deviation of �̂⇤ across simulations.
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Example: Parametric bootstrap for the Poisson MLE

# Input: Data vector X

lambda_hat = mean(X)

n = length(X)

# Perform 100000 bootstrap simulations

B = 100000

lambda_hat_star = numeric(B)

for (i in 1:B) {

X_star = rpois(n,lambda_hat)

lambda_hat_star[i] = mean(X_star)

}

print(sd(lambda_hat_star))

We obtain the same answer, 0.083.
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The nonparametric bootstrap

In the nonparametric bootstrap, we do not assume any parametric
model when simulating new data. Instead, we sample

X ⇤
1 , . . . ,X

⇤
n

independently with replacement from the original data values
X1, . . . ,Xn.

I The sample size for X ⇤
1 , . . . ,X

⇤
n in each bootstrap simulation

is still n, the sample size of the original data.

I It is likely to have repeated values in X ⇤
1 , . . . ,X

⇤
n , since we

may sample the same value X1, . . . ,Xn more than once.

I It is also likely that some original values X1, . . . ,Xn will not
appear in X ⇤

1 , . . . ,X
⇤
n . For large n, typically 63.2% of the

values in X1, . . . ,Xn will appear in X ⇤
1 , . . . ,X

⇤
n . (This is a

di↵erent 63.2% of samples in each bootstrap simulation.)
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Example: Nonparametric bootstrap for the Poisson MLE

# Input: Data vector X

n = length(X)

# Perform 100000 bootstrap simulations

B=100000

lambda_hat_star = numeric(B)

for (i in 1:B) {

X_star = sample(X, size=n, replace=TRUE)

lambda_hat_star[i] = mean(X_star)

}

print(sd(lambda_hat_star))

We obtain an estimated standard error of 0.085. For this data, this
is very close to the previous value 0.083, computed using the
parametric bootstrap or asymptotic theory.
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Rationale for the nonparametric bootstrap

The nonparametric bootstrap also simulates

X ⇤
1 , . . . ,X

⇤
n

as IID draws from an estimate of the true data distribution.

This estimated distribution is the empirical distribution of the
observed data, which is the discrete distribution that places mass 1

n
at each of the observed data values X1, . . . ,Xn.

A sample X ⇤
i drawn from this empirical distribution is equally likely

to be any of the values X1, . . . ,Xn. Thus IID samples X ⇤
1 , . . . ,X

⇤
n

from this empirical distribution are exactly n samples drawn with
replacement from the original data X1, . . . ,Xn.
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The empirical distribution

Estimating the true distribution by the empirical distribution is
quite di↵erent from how we’ve discussed estimation thus far (which
was to assume a model, and estimate parameters in this model).

There are some obvious ways in which the empirical distribution
di↵ers from the true distribution:

I Even if the true distribution were continuous, the empirical
distribution is always discrete.

I It doesn’t make sense to compare the mode, maximum value,
and minimum value of the true distribution with the mode,
maximum, and minimum of the empirical distribution.

However, the empirical distribution is an accurate estimate of the
true distribution in other ways, for example in terms of its CDF,
mean, and variance.
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The empirical CDF
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The CDF of the true distribution N (0, 1) is in red. The CDF of

the empirical distribution of X1, . . . ,Xn
IID⇠ N (0, 1) is in black.

They are very close. This is because the empirical CDF is

Fn(t) =
1

n

nX

i=1

1{Xi  t}.

As n ! 1, this converges to P[Xi  t] = F (t), for every value t.
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The empirical mean and moments
Since the empirical distribution of X1, . . . ,Xn places mass 1

n on
each value, its mean is the sample mean X̄ = 1

n (X1 + . . .+Xn). As
n ! 1, this converges to the mean of the true distribution, E[X ].

More generally, for any function g(x), the expectation of g(x)
under the empirical distribution is

1

n

nX

i=1

g(Xi ).

As n ! 1, this converges to the expectation of g(x) under the
true distribution, E[g(X )].

Taking g(x) = xk , each k th moment of the empirical distribution is
close to the moment of the true distribution, for large n. In
particular, the empirical distribution is a good approximation to the
true distribution in terms of mean, variance, skewness, kurtosis, ...
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Depiction of the nonparametric bootstrap

It makes sense to use the nonparametric bootstrap for statistics
s(X) whose behavior is similar under F and F̂ (e.g. sample mean,
sample variance, sample average of some function g(x)).

The nonparametric bootstrap should not be used for statistics like
the sample mode or the maximum value max(X1, . . . ,Xn).

Image from Efron and Tibshirani, An Introduction to the Bootstrap, 1993.
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The bootstrap and model misspecification

Example: Suppose we have integer count data X1, . . . ,Xn
IID⇠ g(x).

We fit a Poisson(�) model by computing the MLE �̂ = X̄ .

The Fisher information in this model is I (�) = 1
� . So the plug-in

Fisher information estimate of the standard error is

s
1

nI (�̂)
=

s
�̂

n
=

s
X̄

n
.

By the CLT, the true standard error is
q

Varg [X ]
n . If g(x) is indeed

a Poisson distribution, then Varg [X ] = � so
q

�̂
n is an accurate

estimate of this standard error for large n.

In general, this is accurate only if the variance of the true
distribution is equal to or close to its mean.
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The bootstrap and model misspecification

Suppose X1, . . . ,X100
IID⇠ Geometric(0.3), but we fit this Poisson(�)

model. Let X̄ and S2 be the sample mean and sample variance.

Estimated standard errors for the Poisson MLE �̂:

Fisher information estimate
p
X̄/n: 0.14

Sample-variance based estimate
p
S2/n: 0.22

Parametric bootstrap (assuming Poisson model): 0.14
Nonparametric bootstrap: 0.22

I The nonparametric bootstrap guards against model
misspecification. The parametric bootstrap does not.

I Even if our statistic is motivated by a parametric model (for
example, the MLE in this model), we may still wish to use the
nonparametric bootstrap to estimate its standard error, to
guard against model misspecification.
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Bootstrap confidence intervals



Bootstrap confidence intervals

In addition to estimating standard errors, the bootstrap may also
be used to construct confidence intervals.

There are many ways to do this. In this lecture, we will discuss and
compare the three simplest approaches:

I The normal interval

I The percentile interval

I The “basic bootstrap” interval

These may all be applied using either the parametric or the
nonparametric bootstrap.
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The normal bootstrap interval

Let ✓̂ be an estimate of ✓ 2 R. Let bse be the (parametric or
nonparametric) bootstrap estimate of the standard error of ✓̂.

We may construct a (1� ↵)-confidence interval for ✓ as

✓̂ ± z(↵/2) bse

where z(↵/2) is the upper-↵/2 point of the standard normal.

I This method is most similar to how we constructed confidence
intervals in previous lectures. It simply replaces the theoretical
standard error estimate with the bootstrap estimate.

I This interval is valid if the distribution of ✓̂ is approximately
normal around ✓. This holds for many estimators ✓̂ of interest,
for large n.
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The percentile bootstrap interval

Suppose we performed B bootstrap simulations. Let ✓̂⇤1, . . . , ✓̂
⇤
B be

the values of ✓̂ computed in these B simulations.

Let ✓̂⇤(↵/2) and ✓̂⇤(1�↵/2) be the empirical ↵/2 and 1� ↵/2
quantiles of these simulated values. Construct a (1�↵)-confidence
interval for ✓ as

[✓̂⇤(↵/2), ✓̂⇤(1�↵/2)].

I Rationale: Simulating X ⇤
1 , . . . ,X

⇤
n from an estimate of the

true data distribution, the distribution of ✓̂⇤ = ✓̂(X ⇤
1 , . . . ,X

⇤
n )

should be close to the distribution of ✓̂(X1, . . . ,Xn). Then the
quantiles for ✓̂⇤ should be close to the quantiles for ✓̂.

I The quantiles of ✓̂ form a valid confidence interval for ✓ if ✓̂ is
symmetrically distributed around ✓. (Otherwise, the
justification for this approach is perhaps unclear.)
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The “basic bootstrap” interval

I In the Real World, ✓ is the unknown parameter and
✓̂ = ✓̂(X1, . . . ,Xn) is the estimate.

I In the Bootstrap World, ✓̂ = ✓̂(X1, . . . ,Xn) plays the role of
the unknown parameter, and ✓̂⇤ = ✓̂(X ⇤

1 , . . . ,X
⇤
n ) is the

estimate.
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The “basic bootstrap” interval

Let q(↵/2) and q(1�↵/2) be the ↵/2 and 1� ↵/2 quantiles of

✓̂⇤1 � ✓̂, . . . , ✓̂⇤B � ✓̂

across the B bootstrap simulations.

Use this to approximate the true distribution of ✓̂� ✓. Observe that

✓̂ � ✓ 2 [q(↵/2), q(1�↵/2)] () ✓ 2 [✓̂ � q(1�↵/2), ✓̂ � q(↵/2)].

Then construct a (1� ↵)-confidence interval for ✓ as

[✓̂ � q(1�↵/2), ✓̂ � q(↵/2)].

If q(↵/2) and q(1�↵/2) were the true quantiles of ✓̂ � ✓, then this
would have the desired coverage probability of 1� ↵.
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Basic bootstrap versus percentile interval

The quantiles q(↵/2) and q(1�↵/2) of ✓̂⇤ � ✓̂ are equivalently

q(↵/2) = ✓̂⇤(↵/2) � ✓̂, q(1�↵/2) = ✓̂⇤(1�↵/2) � ✓̂.

Then the basic bootstrap interval [✓̂ � q(1�↵/2), ✓̂ � q(↵/2)] is

[2✓̂ � ✓̂⇤(1�↵/2), 2✓̂ � ✓̂⇤(↵/2)].

This is not the same as the percentile interval

[✓̂⇤(↵/2), ✓̂⇤(1�↵/2)].

If the distribution of ✓̂⇤1, . . . , ✓̂
⇤
B is symmetric around ✓̂, then these

are the same because ✓̂⇤(↵/2) + ✓̂⇤(1�↵/2) = 2✓̂.
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Basic bootstrap versus percentile interval

I Suppose ✓̂ has positive bias for ✓, and ✓̂⇤ has equal positive
bias for ✓̂. Then the percentile interval has twice this bias,
and may not cover ✓ if the bias is severe. However, the basic
bootstrap interval corrects for the bias, since the bias in
✓̂⇤ � ✓̂ is subtracted from the original bias of ✓̂.

I Rice advocates for the basic bootstrap interval, and says of
the percentile interval: “Although this direct equation of
quantiles of the bootstrap sampling distribution with
confidence limits may seem initially appealing, its rationale is
somewhat obscure.”

23



Pros and cons of the bootstrap

The bootstrap is one of the most widely used methods in practice
for quantifying statistical uncertainty.

I It is easy to apply to complex statistics, and does not require
theoretical approximation of the sampling distribution.

I The nonparametric bootstrap is a simple way to obtain
standard errors that are valid under model misspecification.

I It can be computationally prohibitive, especially when the
statistic of interest is hard to compute. This statistic must be
recomputed for each bootstrap simulation.

I There are certain statistics (e.g. max(X1, . . . ,Xn)) that do not
have similar behaviors under the true distribution F and under
the empirical distribution Fn, for which the nonparametric
bootstrap should not be applied.
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