
S&DS 242/542: Theory of Statistics
Lecture 21: Models with covariates and response



Predictive modeling



Predicting income from education and seniority (ISLR)

For n individuals, we observe their:

I Annual income

I Years of education

I Seniority

We wish to build a predictive model for income based on years of
education and seniority.

Here income is the output variable, response, or dependent
variable. We will denote these by Y1, . . . ,Yn.

Years of education and seniority are the input variables, covariates,
predictors, or independent variables. We will denote these by
X1, . . . ,Xn. Each Xi is the tuple of predictors for the i th individual.

We will call (X1,Y1), . . . , (Xn,Yn) our training data.
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Predicting income from education and seniority (ISLR)

Goal: Learn a function f (·) for which Y ⇡ f (X )
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Prediction and inference

There are two types of reasons why we may wish to learn the
relationship Y ⇡ f (X ).

Prediction:

I Given a new input Xtest, predict the response Ytest

I f (·) is a black box, and we may not be interested in its form

Inference:

I Understand how X is associated to Y : What is the form of
the relationship between each predictor and the response?
Which predictors actually influence the response? How would
perturbing a predictor a↵ect the response?

I We may want f (·) to have an interpretable and simple form

Both goals require learning a “true” relationship between X and
Y , rather than some f (·) that only fits well on our training data.
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Formulations of the data model

Suppose (X1,Y1), . . . , (Xn,Yn), (Xtest,Ytest) are i.i.d., and let
(X ,Y ) represent the distribution of a single observation.

There are di↵erent models we may posit for the data, expressing
di↵erent assumptions about the distribution of (X ,Y ):

I The distribution of (X ,Y ) is arbitrary, and we wish to learn
the regression function

f (x) = E[Y | X = x ]

Writing Y = f (X ) + ", this means that conditional on X = x ,
" has mean 0 but its distribution may otherwise depend on x .

I The distribution of X is arbitrary, and

Y = f (X ) + "

where " has mean 0 and is independent of X .
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Formulations of the data model

I The distribution of X is arbitrary, and

Y = f (X | �) + "

where, in additional to the previous assumptions for ", the
function f (· | �) has a parametric form with parameter �.

For example, if X = (x1, . . . , xp) has p quantitative predictors,
we may consider a linear model

Y = �0 + �1x1 + �2x2 + . . .+ �pxp + "

with parameters � = (�0,�1,�2, . . . ,�p) 2 Rp+1.

We will oftentimes make a distinction between the model for
(X ,Y ) that we choose to fit, vs. the actual distribution of the data.
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Irreducible vs. reducible prediction error

Suppose we predict Y by a function g(X ). Fixing a test point x ,
we may be interested in the mean-squared prediction error

E[(Ytest � g(x))2 | Xtest = x ]

or its average over the distribution of Xtest.

Suppose Y = f (X ) + " where " is mean-0 and independent of X .
We have:
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Irreducible vs. reducible prediction error

Thus

E[(Ytest � g(x))2 | Xtest = x ] = (f (x)� g(x))2| {z }
reducible error

+ Var["]| {z }
irreducible error

I We would incur the irreducible error even if we had perfect
knowledge of the true function f (·). This error is non-zero if
Y cannot be perfectly predicted given X , e.g. if there are
unmeasured variables that also influence Y .

I The reducible error is the error that we may hope to minimize
by learning an accurate prediction model g(·). In the best
case, g(x) = f (x) and the reducible error is 0.
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Bias-variance decomposition of reducible error

In practice, we estimate f (x) by a function f̂ (x) that is random
and depends on our training data (X1,Y1), . . . , (Xn,Yn).

Still fixing the test point x , let us define the bias and variance of
the prediction at x by

Bias = E[f̂ (x)]� f (x)

Variance = Var[f̂ (x)]

where E[·] and Var[·] are over (X1,Y1), . . . , (Xn,Yn).

Then E[(reducible error)2] =
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Three-fold decomposition of prediction error

Thus the prediction mean-squared-error at a test point x is

E[(Ytest � f̂ (x))2 | Xtest = x ]

= (E[f̂ (x)]� f (x))2| {z }
squared bias

+Var[f̂ (x)]| {z }
variance

+ Var["]| {z }
irreducible error

I Variance refers to the variability of the our prediction f̂ (x)
under di↵erent possible realizations of our training data.
Large variance may indicate that we have overfitted to the
training data.

I Bias refers to a di↵erence between the true regression function
f (x) and our prediction f̂ (x) averaged over the randomness of
the training data. Large bias may indicate that the true f (x)
is far from the class of functions represented by our model.
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Bias-variance tradeo↵ in prediction error

Black curve: True regression function f (x)
Orange, blue, green curves: Three di↵erent estimates f̂ (x)
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Considerations for model complexity

The choice between fitting a simple model vs. a complex model
may be determined by two trade-o↵s:

I Prediction vs. inference: To what extent do we care about the
predictive accuracy of the model, and to what extent do we
care about its interpretability and the meaning it encodes for
the relationship between X and Y ?

I Bias vs. variance: Even if our primary goal is predictive
accuracy, what would be the right model complexity that
balances bias and variance of our model predictions? This
depends on the amount of available data and the complexity
of the true regression function f (x).
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Simple linear regression



Simple linear regression

Consider data (X1,Y1), . . . , (Xn,Yn) where X 2 R is a single
quantitative predictor. The simple linear regression model is

Y = �0 + �1X + "

with parameters �0,�1, representing the slope and intercept of the
regression line.
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The population regression line

Restricting ourselves to this linear model, the parameters we wish
to learn may be the population least-squares coe�cients

�⇤
0 ,�

⇤
1 = argmin

�0,�1

E[(�0 + �1X � Y )2]

These parameters minimize the prediction mean-squared-error over
the true distribution of data.

These have an explicit form:
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The population regression line
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Correlation and regression

Suppose X ,Y both have mean 0 and variance 1, and their
correlation is Corr(X ,Y ) = ⇢. Then

�⇤
0 = 0, �⇤

1 = ⇢,

and the population least-squares regression line is Y = ⇢X .

This is not symmetric between X and Y . If we were predicting X
from Y , then the least-squares line would be X = ⇢Y , i.e. Y = X

⇢ .

Interpretation: Let (X ,Y ) = (height of father, height of son).
Given that the father is 1 std. dev. taller than average, the son is
only ⇢ std. dev. taller than average in expectation.

(Similarly, given that the son is 1 std. dev. taller than average, the
father is only ⇢ std. dev. taller than average in expectation.)
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Correlation and regression

Example: Suppose (X ,Y ) are bivariate normal w/ correlation 0.5
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Black: Y = X
Red: Least-squares regression line for predicting Y from X
Blue: Least-squares regression line for predicting X from Y
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Least squares estimation

We may fit �0,�1 by minimizing the average squared error on our
training data,

(�̂0, �̂1) = argmin
�0,�1

1

n

nX

i=1

(�0 + �1Xi � Yi )
2

These are the least-squares estimators for �0,�1.

The same derivation as for the population coe�cients �⇤
0 ,�

⇤
1 shows

that these estimators have the closed-form expressions

�̂1 =

Pn
i=1(Xi � X̄ )(Yi � Ȳ )Pn

i=1(Xi � X̄ )2
�̂0 = Ȳ � �̂1X̄
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A maximum likelihood interpretation of least squares

Suppose that X1, . . . ,Xn
IID⇠ fX , and

Yi = �0 + �1Xi + "i

where "1, . . . , "n
IID⇠ N (0,�2) are normal errors independent of

X1, . . . ,Xn. Then (�̂0, �̂1) is the MLE for (�0,�1):
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Unbiasedness in a correctly specified model

Theorem
Suppose (X1,Y1), . . . , (Xn,Yn) are i.i.d. and distributed according
to a true model

Y = �⇤
0 + �⇤

1X + "

where " has mean 0 and is independent of X . Then E[�̂0] = �⇤
0

and E[�̂1] = �⇤
1 , i.e. �̂ = (�̂0, �̂1) is unbiased for �⇤ = (�⇤

0 ,�
⇤
1).

Proof:
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Unbiasedness in a correctly specified model

(In fact, this only required the assumption E[" | X = x ] = 0 for
each x 2 R, i.e. " has mean-0 conditional on X .)
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Consistency for the population coe�cients

Theorem
Suppose (X1,Y1), . . . , (Xn,Yn) are i.i.d., and let

(�⇤
0 ,�

⇤
1) = argmin

�0,�1

E[(�0 + �1X � Y )2]

Then (�̂0, �̂1) ! (�⇤
0 ,�

⇤
1) in probability as n ! 1, i.e. �̂ is

consistent for �⇤.

Proof:
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Consistency for the population coe�cients
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Decomposition of prediction error

Recall our decomposition of prediction mean-squared-error at a
fixed test point x :

E[(Ytest � f̂ (x))2 | Xtest = x ]

= (E[f̂ (x)]� f (x))2| {z }
squared bias

+Var[f̂ (x)]| {z }
variance

+ Var["]| {z }
irreducible error

Suppose the true model is Y = �⇤
0 + �⇤

1X + ". Then

I The true regression function is f (x) = �⇤
0 + �⇤

1x .

I The estimated regression function is f̂ (x) = �̂0 + �̂1x . Since
�̂ is unbiased, E[f̂ (x)] = f (x) so the squared bias is 0.

I As n ! 1, since �̂ ! �⇤ in probability, we have also
f̂ (x) ! f (x) in probability. Then we expect Var[f̂ (x)] ! 0.

Assuming that the irreducible error Var["] > 0 is fixed for all n, the
prediction error is dominated by this irreducible error for large n.
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Decomposition of prediction error

More generally, suppose Y = f (X ) + " where " is mean-0 and
independent of X . Let

(�⇤
0 ,�

⇤
1) = argmin

�0,�1

E[(�0 + �1X � Y )2]

Then, as n ! 1,

I Since �̂ ! �⇤ in probability, also f̂ (x) ! �⇤
0 + �⇤

1x in
probability. Then we expect E[f̂ (x)] ! �⇤

0 + �⇤
1x , so the

squared bias approaches (�⇤
0 + �⇤

1x � f (x))2.

I We still expect Var[f̂ (x)] ! 0.

Thus for large n, the prediction error is approximately

E[(Ytest � f̂ (x))2 | Xtest = x ] ⇡ (�⇤
0 + �⇤

1x � f (x))2 + Var["]

the sum of the irreducible error and the squared approximation
error of f (x) by the best linear predictor.
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