
S&DS 242/542: Theory of Statistics

Lecture 22: Inference in simple linear regression



The simple linear model

For a quantitative covariate X 2 R and response Y 2 R, the
simple linear model is

Y = �0 + �1X + "

The least squares estimators are given by

(�̂0, �̂1) = argmin
�0,�1

1

n

nX

i=1

(�0 + �1Xi � Yi )
2

Questions:

I How to estimate standard errors for �̂0, �̂1?

I How to construct confidence intervals for �0,�1?

I How to test H0 : �1 = 0 vs. H1 : �1 6= 0?
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Inference for least squares in the normal model



The normal errors model

Suppose (X1,Y1), . . . , (Xn,Yn) are IID and distributed according
to a linear model

Y = �0 + �1X + "

where " ⇠ N (0,�2) is normally distributed and independent of X .

Recall that

I (�̂0, �̂1) are also the maximum-likelihood estimators.

I (�̂0, �̂1) are unbiased estimators for (�0,�1). In fact, they are
unbiased conditional on any fixed x1, . . . , xn.

In the subsequent theorems, it is convenient to also condition on
x1, . . . , xn, i.e. treat these as fixed and study statistical properties
of �̂0, �̂1 over only the randomness of Y1, . . . ,Yn.
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Distribution of least-squares estimators

Theorem

Fixing x1, . . . , xn, let Y1, . . . ,Yn be given by

Yi = �0 + �1xi + "i

where "i
IID⇠ N (0,�2). Denote

x̄ =
1

n

nX

i=1

xi , s
2
x =

1

n

nX

i=1

(xi � x̄)2.

Then the least-squares estimators (�̂0, �̂1) have a bivariate normal

distribution

✓
�̂0
�̂1

◆
⇠ N

 ✓
�0
�1

◆
,
�2

n

 
x̄2

s2x
+ 1 � x̄

s2x
� x̄

s2x
1
s2x

!!

3



Distribution of least-squares estimators

Proof:
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Distribution of least-squares estimators
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Distribution of least-squares estimators
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Unbiased estimate of residual variance

Thus the standard errors of �̂0 and �̂1 are

se0 =

s
�2

n

✓
x̄2

s2x
+ 1

◆
and se1 =

s
�2

n
· 1

s2x

We can estimate these standard errors as long as we can estimate
the residual variance �2.

The classical estimate is

�̂2 =
1

n � 2
RSS where RSS =

nX

i=1

(�̂0 + �̂1xi � Yi )
2

Here RSS is called the residual sum-of-squares.
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Unbiased estimate of residual variance

Theorem

Fixing x1, . . . , xn, let Y1, . . . ,Yn be given by

Yi = �0 + �1xi + "i

where "i
IID⇠ N (0,�2). Then �̂2

is independent of the least-squares

estimators (�̂0, �̂1), and has the (rescaled) chi-squared distribution

�̂2 ⇠ �2

n � 2
�2
n�2

Since the mean of the �2
n�2 distribution is n � 2, this implies that

E[�̂2] = �2, so �̂2 is an unbiased estimate of �2.
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Unbiased estimate of residual variance

Proof of independence and unbiasedness:
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Unbiased estimate of residual variance
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Unbiased estimate of residual variance
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Estimated standard errors and confidence intervals

We may estimate the standard error se1 of �̂1 by

ŝe1 =

s
�̂2

n
· 1

s2x

where �̂2 = 1
n�2 RSS is the preceding estimate of residual variance.

An asymptotic confidence interval for �1 with coverage probability
(1� ↵) is given by

�̂1 ± z
(↵/2) · ŝe1

where z
(↵/2) is the upper-↵/2 point of the standard normal.

Estimated standard errors and confidence intervals for �0 are
analogous.
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t-test for regression coe�cients

To test
H0 : �1 = 0 vs. H1 : �1 > 0

observe that under H0, we have

�̂1
se1

⇠ N (0, 1),
ŝe21
se21

=
�̂2

�2
⇠ 1

n � 2
�2
n�2

and these are independent. Then by definition of the t-distribution,

�̂1
ŝe1

⇠ tn�2

Here �̂1
ŝe1

is the t-statistic for testing H0 : �1 = 0, and a one-sided

level-↵ t-test rejects H0 if �̂1
ŝe1

> t
(↵)
n�2.

A two-sided t-test may be used to test against H1 : �1 6= 0.
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Summary

These procedures address the questions

I How to estimate standard errors for �̂0, �̂1?

I How to construct confidence intervals for �0,�1?

I How to test H0 : �1 = 0 vs. H1 : �1 6= 0?

assuming that Yi = �0 + �1xi + "i and "i
IID⇠ N (0,�2).

The coverage guarantee of the confidence interval and Type I error
guarantee of the t-test hold for any fixed x1, . . . , xn. Hence they
also hold in a model

Yi = �0 + �1Xi + "i

where X1, . . . ,Xn are random and "1, . . . , "n
IID⇠ N (0,�2) are

independent of X1, . . . ,Xn, by applying these guarantees
conditional on any realization of x1, . . . , xn.
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Inference under model misspecification



Example 1: Non-normal errors
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True model: Y = X + heavy-tailed errors

Least-squares estimates: (�̂0, �̂1) = (�0.009, 1.01)
Estimated standard errors: (ŝe0, ŝe1) = (0.030, 0.052)
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Example 1: Non-normal errors

Across 1000 simulations:

Mean of �̂1: 1.00
Standard deviation of �̂1: 0.055

Average estimated standard error ŝe1: 0.055
Empirical coverage of 90% confidence interval �̂1± z

(0.05) ŝe1: 90%

Under hypothesis H0 : �1 = 0 with data generated as

Y = heavy-tailed errors (with no dependence on X )

Empirical Type I error probability of a level-0.10 t-test: 9.9%

The preceding procedures are robust to the non-normality of errors.
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Example 2: Heteroscedastic errors
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True model: Y = X + " where " ⇠ N (0, x2) given X = x

Least-squares estimates: (�̂0, �̂1) = (�0.037, 0.99)
Estimated standard errors: (ŝe0, ŝe1) = (0.018, 0.032)
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Example 2: Heteroscedastic errors

Across 1000 simulations:

Mean of �̂1: 1.00
Standard deviation of �̂1: 0.043

Average estimated standard error ŝe1: 0.032
Empirical coverage of 90% confidence interval �̂1± z

(0.05) ŝe1: 76%

Under H0 : �1 = 0 with data generated as

Y = ", " ⇠ N (0, x2) given X = x

Empirical Type I error probability of a level-0.10 t-test: 23%
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Example 3: Non-linear model
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True model: Y = X +X
2+ " with " ⇠ N (0, 0.1) independent of X

Least-squares estimates: (�̂0, �̂1) = (0.34, 1.01)
Estimated standard errors: (ŝe0, ŝe1) = (0.010, 0.017)
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Example 3: Non-linear model

Here (�̂0, �̂1) may be understood as estimating the population
least-squares coe�cients

(�⇤
0 ,�

⇤
1) = argmin

�0,�1

E[(�0 + �1X � Y )2] = (13 , 1)

Across 1000 simulations:
Mean of �̂1: 1.00, Standard deviation of �̂1: 0.021

Average estimated standard error ŝe1: 0.017
Empirical coverage of 90% confidence interval �̂1± z

(0.05) ŝe1: 83%

Under H0 : �⇤
1 = 0 with data generated as

Y = X
2 + ", " ⇠ N (0, 0.1) independent of X

Empirical Type I error probability of a level-0.10 t-test: 17%
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Summary

For large sample sizes n, the preceding inference procedures based
on a true linear model with normal errors are reasonably robust to
non-normality of the errors.

However, they are not robust to heteroscedasticity of the error
variance or nonlinearity of the true regression function.
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Nonparametric bootstrap estimate of standard error

There are both analytic and simulation-based approaches to
correct these problems under model specification.

One approach is using the nonparametric bootstrap:

1. For each of B bootstrap simulations:
I Resample n pairs (X ⇤

1 ,Y
⇤
1 ), . . . , (X

⇤
n ,Y

⇤
n ) with replacement

from (X1,Y1), . . . , (Xn,Yn).
I Compute the least squares estimators (�̂⇤

0 , �̂
⇤
1 ) on the

resampled data (X ⇤
1 ,Y

⇤
1 ), . . . , (X

⇤
n ,Y

⇤
n )

2. Estimate the standard errors of �̂0 and �̂1 by the empirical
standard deviations of �̂⇤

0 and �̂⇤
1 across the B bootstrap

simulations.

3. Use these estimates instead of the model-based estimates
ŝe0, ŝe1 to construct confidence intervals and t-statistics
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Example 2: Heteroscedastic errors

Across 1000 simulations:

Mean of �̂1: 1.00
Standard deviation of �̂1: 0.043

Average bootstrap estimate of standard error: 0.042
Empirical coverage of 90% bootstrap confidence interval: 89%

Under H0 : �1 = 0 with data generated as

Y = ", " ⇠ N (0, x2) given X = x

Type I error probability of level-0.10 bootstrap t-test: 9.8%
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Example 3: Non-linear model

Across 1000 simulations:

Mean of �̂1: 1.00
Standard deviation of �̂1: 0.021

Average bootstrap estimated of standard error: 0.021
Empirical coverage of 90% bootstrap confidence interval: 89%

Under H0 : �⇤
1 = 0 with data generated as

Y = X
2 + ", " ⇠ N (0, 0.1) independent of X

Type I error probability of level-0.10 bootstrap t-test: 10.9%
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