S&DS 242/542: Theory of Statistics Lecture 22: Inference in simple linear regression

The simple linear model

For a quantitative covariate $X \in \mathbb{R}$ and response $Y \in \mathbb{R}$, the simple linear model is

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

The least squares estimators are given by

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname*{arg\,min}_{\beta_0, \beta_1} \frac{1}{n} \sum_{i=1}^n (\beta_0 + \beta_1 X_i - Y_i)^2$$

Questions:

- How to estimate standard errors for $\hat{\beta}_0, \hat{\beta}_1$?
- How to construct confidence intervals for β_0, β_1 ?
- How to test H_0 : $\beta_1 = 0$ vs. H_1 : $\beta_1 \neq 0$?

Inference for least squares in the normal model

The normal errors model

Suppose $(X_1, Y_1), \ldots, (X_n, Y_n)$ are IID and distributed according to a linear model

 $Y = \beta_0 + \beta_1 X + \varepsilon$

where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ is normally distributed and independent of X.

Recall that

- $(\hat{\beta}_0, \hat{\beta}_1)$ are also the maximum-likelihood estimators.
- (β̂₀, β̂₁) are unbiased estimators for (β₀, β₁). In fact, they are unbiased conditional on any fixed x₁,..., x_n.

In the subsequent theorems, it is convenient to also condition on x_1, \ldots, x_n , i.e. treat these as fixed and study statistical properties of $\hat{\beta}_0, \hat{\beta}_1$ over only the randomness of Y_1, \ldots, Y_n .

Theorem Fixing x_1, \ldots, x_n , let Y_1, \ldots, Y_n be given by

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

where $\varepsilon_i \stackrel{\textit{IID}}{\sim} \mathcal{N}(0, \sigma^2)$. Denote

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad s_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

Then the least-squares estimators $(\hat{\beta}_0, \hat{\beta}_1)$ have a bivariate normal distribution

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \ \frac{\sigma^2}{n} \begin{pmatrix} \frac{\bar{x}^2}{s_x^2} + 1 & -\frac{\bar{x}}{s_x^2} \\ -\frac{\bar{x}}{s_x^2} & \frac{1}{s_x^2} \end{pmatrix} \right)$$

Proof: $\hat{\beta}_{i} = \frac{\hat{z}_{i}(x_{i} - \bar{x})(Y_{i} - \bar{Y})}{\hat{z}_{i}(x_{i} - \bar{x})^{2}}$ (use Y:= Bot B x + E. $\bar{\gamma} = \beta_0 + \beta_1 \bar{x} + \bar{\epsilon}$ $= \sum_{i=1}^{\infty} (x_i \cdot \overline{x}) \left(\beta_i (x_i \cdot \overline{x}) + (\varepsilon_i \cdot \overline{\varepsilon}) \right)$ 2 (x; - x)2 $= \beta_{1} + \frac{1}{n} \underbrace{\sum_{i=1}^{n} (x_{i} - \bar{x})(\overline{x_{i}} - \overline{e})}_{\frac{1}{n}} = \beta_{1} + \underbrace{\sum_{i=1}^{n} \frac{x_{i} - \bar{x}}{ns_{x}^{2}}}_{\frac{1}{n} + \underbrace{\sum_{i=1}^{n} \frac$ $\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1} \ \bar{x} = (\beta_{0} + \beta_{1} \ \bar{x} + \hat{\epsilon}) - (\beta_{1} + \hat{\xi} \ \frac{x - \bar{x}_{0}}{h \xi^{2}} \ \epsilon_{1}) \ \bar{x}$

= $\beta_0 + \sum_{ij} \frac{1}{n} \left(1 - \frac{(x_i \cdot \overline{x})\overline{x}}{s_i^2} \right) \xi_i$

50: B= B+ 2 a: E = B+ aTE, B= B+ 2 6: E = B+ 6 E

- · (p., p.) is bimich normal ble Eins En de Ito normal
- $E\beta_0 = \beta_0, E\beta_1 = \beta_1, \quad b/c \quad E \in = 0$ • $V_{arr} [\beta_1] = \sum_{i=1}^{n} V_{arr} [b_i \in i] = \sigma^2, \quad \frac{\beta_1}{2} = \frac{\beta_1}{n}, \quad \frac{(x_i - \overline{x})^2}{s_x^4} = \frac{\sigma^2}{n}, \quad \frac{\beta_1}{s_x^5}$

 $\cdot \bigvee_{n} \left[\beta_{0} \right] = \sum_{i=1}^{n} \bigvee_{n'} \left[\alpha_{i} \xi_{i} \right] = \sigma^{2} \sum_{j=1}^{n'} \frac{1}{n^{2}} \left(1 - \frac{\left(\xi_{i} - \overline{y} \right) \overline{x}}{\overline{y_{x}^{2}}} \right)^{2}$

 $= \sigma^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \left(1 - \frac{2(x_{i} - \bar{x})\bar{x}}{s_{i}^{2}} + \frac{(x_{i} - \bar{x})^{2} \bar{x}}{s_{i}^{2}} \right)$

· Cov [(Bo, B.] = Z Z a. b. Cov [E., E] = Z a. b. Var[E] = O unless if

 $= \sigma^{2} \cdot \sum_{q}^{n} \frac{1}{n} \left(1 - \frac{\left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{1}{n}}{s_{2}^{2}} \right) \cdot \frac{1}{n} \cdot \frac{\kappa_{1} \cdot \kappa_{1}}{s_{2}^{2}}$

Thus the standard errors of $\hat{\beta}_0$ and $\hat{\beta}_1$ are

$$\operatorname{se}_0 = \sqrt{rac{\sigma^2}{n} \left(rac{ar{x}^2}{s_x^2} + 1
ight)} \quad ext{and} \quad \operatorname{se}_1 = \sqrt{rac{\sigma^2}{n} \cdot rac{1}{s_x^2}}$$

We can estimate these standard errors as long as we can estimate the residual variance $\sigma^2.$

The classical estimate is

$$\hat{\sigma}^2 = \frac{1}{n-2} \operatorname{RSS}$$
 where $\operatorname{RSS} = \sum_{i=1}^n (\hat{\beta}_0 + \hat{\beta}_1 x_i - Y_i)^2$

Here RSS is called the **residual sum-of-squares**.

Theorem

Fixing x_1, \ldots, x_n , let Y_1, \ldots, Y_n be given by

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

where $\varepsilon_i \stackrel{ID}{\sim} \mathcal{N}(0, \sigma^2)$. Then $\hat{\sigma}^2$ is independent of the least-squares estimators $(\hat{\beta}_0, \hat{\beta}_1)$, and has the (rescaled) chi-squared distribution

$$\hat{\sigma}^2 \sim \frac{\sigma^2}{n-2} \, \chi_{n-2}^2$$

Since the mean of the χ^2_{n-2} distribution is n-2, this implies that $\mathbb{E}[\hat{\sigma}^2] = \sigma^2$, so $\hat{\sigma}^2$ is an unbiased estimate of σ^2 .

Proof of independence and unbiasedness:

Let
$$R_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} \times - Y_{i}$$

$$= (\beta_{0} + a^{T} \varepsilon) + (\beta_{1} + b^{T} \varepsilon) \times - (\beta_{0} + \beta_{1} \times + \varepsilon_{i})$$

$$= a^{T} \varepsilon + \chi_{i} \cdot b^{T} \varepsilon - \varepsilon_{i} \quad (Honer IER_{i} = 0)$$

$$\Rightarrow (\hat{\beta}_{0}, \hat{\beta}_{1}, R_{1,-7}, R_{n}) \quad is multivariate normal$$

$$\cdot Var \left[\hat{\beta}_{0}\right] = \frac{\sigma^{2}}{n} \left(l + \frac{\chi^{2}}{\chi_{i}^{2}}\right) \quad Var \left[Y_{i}\right] = Var \left[\varepsilon_{i}\right] = \sigma^{2}$$

$$Var \left[\hat{\beta}_{0}\right] = \frac{\sigma^{2}}{n} \left(l + \frac{\chi^{2}}{\chi_{i}^{2}}\right) \quad Var \left[Y_{i}\right] = Car \left[\varepsilon_{i}\right] = \sigma^{2}$$

$$Var \left[\hat{\beta}_{i}\right] = \frac{\sigma^{2}}{n} \frac{I}{\xi_{i}^{2}} \quad Cor \left[Y_{i}, \hat{\beta}_{0}\right] = Car \left[\varepsilon_{i}, a^{T} \varepsilon\right] = a_{i} \cdot \sigma^{2}$$

$$Cor \left[\hat{\beta}_{0}, \hat{\beta}_{1}\right] = -\frac{\sigma^{2}}{n} \frac{\chi}{\xi_{i}^{2}} \quad Cor \left[Y_{i}, \hat{\beta}_{i}\right] = Car \left[\varepsilon_{i}, b^{T} \varepsilon\right] = b_{i} \cdot \sigma^{2}$$

· Cov [R:, Bo] = Cov [But Bix - Y:, Bo] = Vor [p] + Cor [p, po] : x: - Cor [Y: p] $= \underbrace{\sigma_{-}^{\prime}}_{-} \left(\left| + \underbrace{\tilde{x}_{+}^{\prime}}_{5,v} \right| + \underbrace{\sigma_{-}^{\prime}}_{-} \left(- \underbrace{\tilde{x}_{+}}_{5,v} \right) \underbrace{x_{-}}_{+} - \underbrace{\downarrow}_{+} \left(\left| - \underbrace{(\underbrace{x_{+}}_{5,v} \cdot \widehat{x}) \underbrace{x}_{-}}_{5,v} \right| \right) \sigma^{\prime} = 0$ Cov [R: B.]= Cov [Bo+Bix-Y: B.] = Cor [Bo, Bi] + Val (Bi) : X: - Cor [Y: B] = 0 So (Ris Ra) and (Bo, B) an privise uncorrelated => (Rin Ra) is indyalul of (po, f.). Recall & 2 - RSS, RSS= ER2 = & is infalled of (P. R.).

 $\cdot \mathbb{E}[\mathbb{R}^2] \cdot \mathbb{V}_{\mathcal{L}}[\mathbb{R}] \quad (bl \in \mathbb{E}\mathbb{R}^{-1})$ = V~ [Bo+Bix; -Y:7 = Var [\$0] + Var[\$.] x.2 + Var[Y.] + 2 Cov [fo, f,] x - 2 Cov [fu, Y] - 2 Cov [B, Y] $= \dots = \sigma^2 - \frac{\sigma^2}{n} \left(1 + \frac{(x_1 - \overline{x})^2}{\sqrt{2}} \right)$ $\Rightarrow ERSS = \underbrace{\overrightarrow{z}}_{i} E[R^{2}] = n\sigma^{2} - \sigma^{2} - \underbrace{\overrightarrow{z}}_{i} \underbrace{\underbrace{(x_{i} - \overline{x})^{2}}_{i}}_{i} = (n - 2)\sigma^{2}$ => E & == E [- 12 : RSS] = or so or is undiand,

Estimated standard errors and confidence intervals

We may estimate the standard error se_1 of \hat{eta}_1 by

$$\hat{\mathrm{se}}_1 = \sqrt{\frac{\hat{\sigma}^2}{n} \cdot \frac{1}{s_x^2}}$$

where $\hat{\sigma}^2 = \frac{1}{n-2} \text{RSS}$ is the preceding estimate of residual variance.

An asymptotic confidence interval for β_1 with coverage probability $(1-\alpha)$ is given by

$$\hat{\beta}_1 \pm z^{(\alpha/2)} \cdot \hat{\mathrm{se}}_1$$

where $z^{(\alpha/2)}$ is the upper- $\alpha/2$ point of the standard normal.

Estimated standard errors and confidence intervals for β_0 are analogous.

t-test for regression coefficients

To test

$$H_0: \beta_1 = 0$$
 vs. $H_1: \beta_1 > 0$

observe that under H_0 , we have

$$\frac{\hat{\beta}_1}{\mathrm{se}_1} \sim \mathcal{N}(0, 1), \qquad \frac{\hat{\mathrm{se}}_1^2}{\mathrm{se}_1^2} = \frac{\hat{\sigma}^2}{\sigma^2} \sim \frac{1}{n-2} \chi_{n-2}^2$$

and these are independent. Then by definition of the t-distribution,

$$rac{\hat{eta}_1}{\hat{\mathrm{se}}_1} \sim t_{n-2}$$

Here $\frac{\hat{\beta}_1}{\hat{se}_1}$ is the **t-statistic** for testing $H_0: \beta_1 = 0$, and a one-sided level- α **t-test** rejects H_0 if $\frac{\hat{\beta}_1}{\hat{se}_1} > t_{n-2}^{(\alpha)}$.

A two-sided t-test may be used to test against $H_1: \beta_1 \neq 0$.

Summary

These procedures address the questions

- How to estimate standard errors for $\hat{\beta}_0, \hat{\beta}_1$?
- How to construct confidence intervals for β_0, β_1 ?
- How to test H_0 : $\beta_1 = 0$ vs. H_1 : $\beta_1 \neq 0$?

assuming that $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ and $\varepsilon_i \stackrel{IID}{\sim} \mathcal{N}(0, \sigma^2)$.

The coverage guarantee of the confidence interval and Type I error guarantee of the t-test hold for any fixed x_1, \ldots, x_n . Hence they also hold in a model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

where X_1, \ldots, X_n are random and $\varepsilon_1, \ldots, \varepsilon_n \stackrel{ID}{\sim} \mathcal{N}(0, \sigma^2)$ are independent of X_1, \ldots, X_n , by applying these guarantees conditional on any realization of x_1, \ldots, x_n .

Inference under model misspecification

Example 1: Non-normal errors

True model: Y = X + heavy-tailed errors

Least-squares estimates: $(\hat{\beta}_0, \hat{\beta}_1) = (-0.009, 1.01)$ Estimated standard errors: $(\hat{se}_0, \hat{se}_1) = (0.030, 0.052)$

Example 1: Non-normal errors

Across 1000 simulations:

Mean of $\hat{\beta}_1$: 1.00 Standard deviation of $\hat{\beta}_1$: 0.055

Average estimated standard error \hat{se}_1 : 0.055 Empirical coverage of 90% confidence interval $\hat{\beta}_1 \pm z^{(0.05)} \hat{se}_1$: 90%

Under hypothesis H_0 : $\beta_1 = 0$ with data generated as

Y = heavy-tailed errors (with no dependence on X)

Empirical Type I error probability of a level-0.10 t-test: 9.9%

The preceding procedures are robust to the non-normality of errors.

Example 2: Heteroscedastic errors

True model: $Y = X + \varepsilon$ where $\varepsilon \sim \mathcal{N}(0, x^2)$ given X = x

Least-squares estimates: $(\hat{\beta}_0, \hat{\beta}_1) = (-0.037, 0.99)$ Estimated standard errors: $(\hat{se}_0, \hat{se}_1) = (0.018, 0.032)$

Example 2: Heteroscedastic errors

Across 1000 simulations:

Mean of $\hat{\beta}_1$: 1.00 Standard deviation of $\hat{\beta}_1$: 0.043

Average estimated standard error \hat{se}_1 : 0.032 Empirical coverage of 90% confidence interval $\hat{\beta}_1 \pm z^{(0.05)} \hat{se}_1$: 76%

Under H_0 : $\beta_1 = 0$ with data generated as

$$Y = \varepsilon, \qquad \varepsilon \sim \mathcal{N}(0, x^2) ext{ given } X = x^2$$

Empirical Type I error probability of a level-0.10 t-test: 23%

Example 3: Non-linear model

True model: $Y = X + X^2 + \varepsilon$ with $\varepsilon \sim \mathcal{N}(0, 0.1)$ independent of X

Least-squares estimates: $(\hat{\beta}_0, \hat{\beta}_1) = (0.34, 1.01)$ Estimated standard errors: $(\hat{se}_0, \hat{se}_1) = (0.010, 0.017)$

Example 3: Non-linear model

Here $(\hat{\beta}_0, \hat{\beta}_1)$ may be understood as estimating the population least-squares coefficients

$$(\beta_0^*, \beta_1^*) = \operatorname*{arg\,min}_{\beta_0, \beta_1} \mathbb{E}[(\beta_0 + \beta_1 X - Y)^2] = (\frac{1}{3}, 1)$$

Across 1000 simulations: Mean of $\hat{\beta}_1$: 1.00, Standard deviation of $\hat{\beta}_1$: 0.021

Average estimated standard error \hat{se}_1 : 0.017 Empirical coverage of 90% confidence interval $\hat{\beta}_1 \pm z^{(0.05)} \hat{se}_1$: 83%

Under H_0 : $\beta_1^* = 0$ with data generated as

$$Y = X^2 + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, 0.1)$ independent of X

Empirical Type I error probability of a level-0.10 t-test: 17%

Summary

For large sample sizes n, the preceding inference procedures based on a true linear model with normal errors are reasonably robust to non-normality of the errors.

However, they are not robust to heteroscedasticity of the error variance or nonlinearity of the true regression function.

Nonparametric bootstrap estimate of standard error

There are both analytic and simulation-based approaches to correct these problems under model specification.

One approach is using the nonparametric bootstrap:

- 1. For each of B bootstrap simulations:
 - ▶ Resample *n* pairs (X₁^{*}, Y₁^{*}),..., (X_n^{*}, Y_n^{*}) with replacement from (X₁, Y₁),..., (X_n, Y_n).
 - Compute the least squares estimators (β̂₀^{*}, β̂₁^{*}) on the resampled data (X₁^{*}, Y₁^{*}), ..., (X_n^{*}, Y_n^{*})
- 2. Estimate the standard errors of $\hat{\beta}_0$ and $\hat{\beta}_1$ by the empirical standard deviations of $\hat{\beta}_0^*$ and $\hat{\beta}_1^*$ across the *B* bootstrap simulations.
- 3. Use these estimates instead of the model-based estimates \hat{se}_0, \hat{se}_1 to construct confidence intervals and t-statistics

Example 2: Heteroscedastic errors

Across 1000 simulations:

Mean of $\hat{\beta}_1$: 1.00 Standard deviation of $\hat{\beta}_1$: 0.043

Average bootstrap estimate of standard error: 0.042 Empirical coverage of 90% bootstrap confidence interval: 89%

Under H_0 : $\beta_1 = 0$ with data generated as

$$Y = arepsilon, \qquad arepsilon \sim \mathcal{N}(0, x^2)$$
 given $X = x$

Type I error probability of level-0.10 bootstrap t-test: 9.8%

Example 3: Non-linear model

Across 1000 simulations:

Mean of $\hat{\beta}_1$: 1.00 Standard deviation of $\hat{\beta}_1$: 0.021

Average bootstrap estimated of standard error: 0.021 Empirical coverage of 90% bootstrap confidence interval: 89%

Under $H_0: \beta_1^* = 0$ with data generated as

 $Y = X^2 + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, 0.1)$ independent of X

Type I error probability of level-0.10 bootstrap t-test: 10.9%