S&DS 242/542: Theory of Statistics

Lecture 24: Logistic regression



Classification models

Let (X, Y) be a predictor-response pair. A classification model is
a model where the response Y is categorical rather quantitative.

In the simplest setting, Y has two possible classes, which we may
encode as 0 and 1. The model may be specified by

PlY =1|X]=p(X), P[Y=0]X]=1-p(X)
where p(X) is an unknown function of the predictors X.

Our goal may be to learn p(X) from data (X1, Y1),...,(Xn, Ya),
and to predict a new response Yiest € {0,1} given Xiest.



Predicting credit card default (ISLR)

2500
L

R
60000
|

40000
L

1500 2000
L

Income
Balance
Income

500 1000
| L
o |-
20000
|

I

od = P

T T T T T T
T T T T

0 500 1000 1500 2000 2500 No  Yes No  Yes
Balance Default Default

Y: Whether an individual defaults on their credit card payment
X: Monthly credit card balance, annual income, student status



Linear regression?

Suppose X € RP consists of p predictors. One approach for
modeling p(X) is to assume a linear model

PIY = 1| X] = p(X [ B) = o+ bra+ ...+ BpXp

and to fit linear regression to (X, Y), treating Y € {0,1} as a
quantitative response.

Potential downsides of this approach:
» The modeled probability p(X | 8) may fall outside [0, 1]
» Difficult to extend to settings where Y has more than 2 classes

This approach is more commonly used in applications with only 2
classes and where responses are harder to predict, i.e. p(X) tends
to be far from 0 or 1.



Logistic regression

Logistic regression instead models p(X) by a logistic function

ebotBixit...4+Bpxp

PlY =1|X]=p(X|B) = 1 + ePotBixit. 4B

which always takes values in (0, 1).

Equivalently,

X
|Oglf(l)()‘<l8‘)lg):60+ﬁ]_x1+...+ﬁpxp

Thus the model assumes that log 15(;8() — the log-odds of Y =1

to Y =0 — is a linear function of the predictors X = (xi,...,xp).




Simple logistic regression



Simple logistic regression model

Consider a single predictor X € R. The logistic regression model is

eBothLX
P[Y:HX]:P(XW):W

with parameters 3 = (o, 81). For f1 >0, p(X | ) looks like:

00 02 04 06 08 1.0

> (3o is the log-odds of Y =1to Y =0 when X =0

» (3 is the increase in this log-odds per unit increase of X



Maximum likelihood estimation

The regression coefficients 3 = (S0, $1) are commonly estimated
using maximum likelihood.

Suppose (X1, Y1), ..., (Xn, Yn) are 11D with

eBO‘i‘ﬁlX

X fx(x),  PY =1]X]=p(X[0) = 1 srmx

The log-likelihood is:

2.9+ £ by [ O™ (p0c) ™ £0)]
(X,
“EDe b £l ety oo

A ﬁfﬁx
- Z [ (pepr) -y (et ™) ¢ by )]



Maximum likelihood estimation

If the data are perfectly separable by a threshold for X, then the
likelihood is maximized when 81 — oo or —oo, and the MLE does
not exist.

00 02 04 06 08 1.0

Otherwise the MLE exists and is given by

B=(Bo. ) = arg fEaXZ Yi(Bo + B1X;) — log(1 + ePotAXiy
0P =1

In general, 8 does not have a closed-form expression.



Derivatives of the log-likelihood



Derivatives of the log-likelihood
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Concavity of the log-likelihood

The second derivative matrix (Hessian) is

V2,5 prm =% 19) (5 )

This satisfies, for every non-zero vector u = (up, u) € R?,

u' V2, (B)u Zp (Xi | B)(1 = p(X; | B)) (U2 + 2uour X; + u?X?)
i=1

== p(X; | B)1 = p(Xi | B))(uo + u1X;)* <0

i=1

This means that V2(,(3) is negative-definite, and £,(f3) is a
strictly concave function of 8 = (5o, 81).
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Characterization of the MLEs

Bo

The MLE 3 = (8o, B1) (when it exists) is the unique solution of

n

0= Vea(5) = Y%~ o 9) 5, )

i=1
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Newton's method and Iterative Reweighted Least Squares

The MLE is often computed numerically using Newton's method:
Blet1) — glt) _ [v2gn(5(t))]*1vgn(ﬁ(t))

(For example, this is implemented in the glm function in R.)

Proposition
Given parameters 3(t) = ( (()t), gt)), define sample weights and
adjusted responses, fori =1,...,n, by

w = p(X; | BO)(1 — p(X; | 5D))
z = 50 + 8OX;: + (Vi — p(X; | D)) /w!?

Then (1) solves the weighted least-squares problem

/g(t—&-l) = arg min Z W,-(t)(/BO 1 BiX; — Zl_(f))Z
507/31 i=1
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Newton's method and Iterative Reweighted Least Squares
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Fisher information matrix

The standard errors of 3 = (30,31) may be derived from the
Fisher information matrix.

Let £(X, Y | B) denote the likelihood for a single observation.
Then the Fisher information matrix for § = (o, 81) is

1(8) = —E[V?log f(X, Y | B)]
—5[p(x |81 -px 1)y 52) | €

where [E denotes the expectation over the distribution of X. This
distribution is usually unknown, and /() is estimated using

prm -0 15) (5 %)

~

The matrix n - I(3) is often called the observed information.
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Asymptotic normality of the MLE

Theorem
Let (X1, Y1),...,(Xa, Ya) be lID, where

eBothLX
P[Y:HX]:P(XW):W

(i.e. the logistic regression model is correctly specified). Then,
under regularity conditions,

V(B — ) = N(0,1(8)7")

in distribution as n — oo.

Let []oo, [-]o1, []10, [']11 denote the entries of a 2 x 2 matrix. Then
for large n, the standard errors of 5y, 51 are approximately

seo = \/[(n-1(8)) oo, se1 = /[(n-1(B)) 111
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Standard error estimates and confidence intervals

A model-based estimate for sej is given by

~

ser = \/[(n- 1(8))u
where n - T(B) is the observed information evaluated at the MLE 3.

Assuming that the logistic regression model for P[Y =1 | X] is
correct with true parameter 3, we expect 3 — 3 and I(ﬁ) — 1(pB)
in probability as n — 0o, so sej/se; — 1.

A confidence interval for 81 with asymptotic coverage 1 — «c is
then given by
,81 + z(o‘/z)sAel

Standard error estimates and confidence intervals for By may be
obtained analogously.
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Hypothesis tests

A test of
Hy:681=0 VS. Hi:681>0

may be based on the z- statlstlc . Under Ho, f1/se1 — N(0,1)
in distribution as n — co. Then by SIutsky s Lemma,

Bl/slél — N(O, 1)

so an asymptotic level-a test may reject Hy when S% > z(®) the
upper-a point of the standard normal distribution.

Under misspecification of the logistic regression model for
P[Y =1 | X], this estimate se; = 1/[(n - 1(3))~1]11 may not be

accurate for the standard error of BAl even for large n, and robust
estimators (e.g. using nonparametric bootstrap) may be preferred.
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Predicting credit card default (ISLR)
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Prediction on test data

Given a new observation Xiest = x, the probability that Yiet =1
under the logistic regression model is

]P)[Ytest =1 ‘ Xtest = X] = p(X ‘ ﬁ)
which we may estimate by

eBOJFBIX

p(x | B) = 1+ Dot

For large n, the standard error of p(x | 3) may be computed from
the approximate normal distribution for Bo + B1x and the delta
method. This may then be used to construct asymptotic
confidence intervals for p(x | 5).
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Multiple predictors and multiple classes



Logistic regression with multiple predictors

For p predictors X = (xi,...,xp) € RP and a binary response
Y € {0,1}, the logistic regression model takes the form

eﬁO+BIX1+---+5po

Py =1[X]=p(X|f) = 1 4+ ePotBixit...+Bpxp

with parameters 3 = (fo, . .., 3p) € RPTL.

These parameters are commonly estimated by the MLE

n
B = arg maxz YI(BO"‘ﬁIXil‘{‘- . __|_5pxl.p)_|og(1+eﬂo+ﬁlxi1+---+5pxip)
BERPHL T

which exists as long as the data are not perfectly separable by
thresholding a linear function of X. There is in general no
closed-form expression for BA and ﬁA is often computed by Newton'’s
method for small p or gradient ascent for large p.
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Fisher information matrix

The Fisher information matrix for 5 = (5o, ..., Bp) is given by

1(8) = —E[V?log f(X,Y | B)]

X1 X12 X1Xp ot X1Xp
2
=FE [p(X|B)A—=p(X|B)) |X xx1 x5 - X%
Xp XpX] XpXo ... X2
- p p~1L pX2 5
with expectation E over the distribution of X = (x1,...,xp).

~

This may be estimated by /() which replaces this expectation by
the sample average over the training data X3, ..., Xj.




Asymptotic normality of the MLE

Theorem

Let (X1, Y1),...,(Xn, Yn) be lID, where P[Y =1 | X] = p(X | 5)
(i.e. the logistic regression model is correctly specified). Then,
under regularity conditions,

V(B —B) = N(0,1(8)7Y)

in distribution as n — oo.

Thus the standard error of Bj for the j™ predictor is approximately

sej = \/[(n-1(8)) 7

~ A

We may estimate this by se; = 1/[(n- /(5))~1]};, and use this
estimate in confidence intervals and hypothesis tests for 3;.
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Predicting credit card default (ISLR)

Coefficient  Std. error z-statistic =~ p-value

Intercept —10.8690 0.4923 —22.08 <0.0001
balance 0.0057 0.0002 24.74 <0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] —0.6468 0.2362 —2.74 0.0062

As in our discussion of linear regression, the meaning of 3; depends
on the other predictors in the model, and represents the effect of
the j predictor on p(X) after controlling for the other predictors.

Coefficient Std. error z-statistic =~ p-value
Intercept —3.5041 0.0707 —49.55 <0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004

In this example, being a student decreases the predicted probability
of default (Y = 1) when controlling for credit card balance and
income, but increases this probability in a univariate regression
model. This occurs because students tend to carry higher balances.
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Multinomial logistic regression

Suppose Y has K classes, encoded as {0,1,...,K — 1} where is
no meaning to the ordering of these classes.

We may extend logistic regression to the multinomial logistic
regression model,

1
FlY =01Xx]= 1+ Z?:]l eBrotBexit..4Bepxp
eBrotBikxit...+Bipxp
PlY =k | X] = fork=1,...,K—1

14+ Zf:_:ll eBewtBaxit...+Bepxp

This has parameters (o, - - ., Bkp) for each class k =1,..., K —1,
where the log-odds of Y = k to Y = 0 is modeled linearly as

P[Y = k | X]

| _trt -4
Py =0|X]

= Bro + Braxr + ... + BipXp
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Log-odds and parameter differences

One may think of Class 0 as a baseline class, where we fix its
parameters by convention

(Boos Bot, - - - 5 Bop) = (0,0,...,0)
Then for each pair of classes k,¢ € {0,1,..., K — 1},

P[Y = k | X]

o8 By =71 X

so the parameter differences Sx; — By; model the log-odds of
Y=ktoY =V

The choice of baseline class is unimportant, in the sense that
choosing a different baseline class will shift (5g;, ..., Bk—1,) by a
constant while keeping the differences 34; — By; unchanged.

= (Bko—Beo) + (Brr — Ber)x1 +. . .+ (Bip — Bep) Xp
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