S&DS 242/542: Theory of Statistics Lecture 24: Logistic regression

Classification models

Let (X, Y) be a predictor-response pair. A **classification model** is a model where the response Y is categorical rather quantitative.

In the simplest setting, Y has two possible classes, which we may encode as 0 and 1. The model may be specified by

$$\mathbb{P}[Y = 1 | X] = p(X), \qquad \mathbb{P}[Y = 0 | X] = 1 - p(X)$$

where p(X) is an unknown function of the predictors X.

Our goal may be to learn p(X) from data $(X_1, Y_1), \ldots, (X_n, Y_n)$, and to predict a new response $Y_{\text{test}} \in \{0, 1\}$ given X_{test} .

Predicting credit card default (ISLR)

Y: Whether an individual defaults on their credit card payment X: Monthly credit card balance, annual income, student status

Linear regression?

Suppose $X \in \mathbb{R}^p$ consists of p predictors. One approach for modeling p(X) is to assume a linear model

$$\mathbb{P}[Y=1 \mid X] = p(X \mid \beta) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

and to fit linear regression to (X, Y), treating $Y \in \{0, 1\}$ as a quantitative response.

Potential downsides of this approach:

• The modeled probability $p(X \mid \beta)$ may fall outside [0, 1]

▶ Difficult to extend to settings where Y has more than 2 classes This approach is more commonly used in applications with only 2 classes and where responses are harder to predict, i.e. p(X) tends to be far from 0 or 1.

Logistic regression

Logistic regression instead models p(X) by a logistic function

$$\mathbb{P}[Y=1 \mid X] = p(X \mid \beta) = \frac{e^{\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p}}$$

which always takes values in (0, 1).

Equivalently,

$$\log \frac{p(X \mid \beta)}{1 - p(X \mid \beta)} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

Thus the model assumes that $\log \frac{p(X)}{1-p(X)}$ — the *log-odds* of Y = 1 to Y = 0 — is a linear function of the predictors $X = (x_1, \dots, x_p)$.

Simple logistic regression

Simple logistic regression model

Consider a single predictor $X \in \mathbb{R}$. The logistic regression model is

$$\mathbb{P}[Y=1\mid X]=p(X\mid eta)=rac{e^{eta_0+eta_1X}}{1+e^{eta_0+eta_1X}}$$

with parameters $\beta = (\beta_0, \beta_1)$. For $\beta_1 > 0$, $p(X \mid \beta)$ looks like:

• β_0 is the log-odds of Y = 1 to Y = 0 when X = 0

β₁ is the increase in this log-odds per unit increase of X

Maximum likelihood estimation

The regression coefficients $\beta = (\beta_0, \beta_1)$ are commonly estimated using maximum likelihood.

Suppose $(X_1, Y_1), \ldots, (X_n, Y_n)$ are IID with

$$X \sim f_X(x), \qquad \mathbb{P}[Y=1 \mid X] = p(X \mid \beta) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}}$$

The log-likelihood is:

$$\begin{split} \mathcal{L}_{n}(\beta) &= \sum_{i=1}^{\infty} \left[p(X_{i}|\beta)^{Y_{i}} \left(1 - p(X_{i}|\beta) \right)^{I-Y_{i}} \cdot f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \int_{0}^{0} \frac{p(X_{i}|\beta)}{1 - p(X_{i}|\beta)} + \log \left(1 - p(X_{i}|\beta) \right) + \log \left(f_{X}(X_{i}) \right) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) - \log \left(1 + e^{\beta_{0} + \beta_{i} \times f_{i}} \right) + \log f_{X}(X_{i}) \right] \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) - \log \left(1 + e^{\beta_{0} + \beta_{i} \times f_{i}} \right) + \log f_{X}(X_{i}) \right] \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) - \log \left(1 + e^{\beta_{0} + \beta_{i} \times f_{i}} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) - \log \left(1 + e^{\beta_{0} + \beta_{i} \times f_{i}} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right] \\ &= \sum_{i=1}^{\infty} \left[Y_{i} : \left(\beta_{i} + \beta_{i} \times f_{i} \right) + \log f_{X}(X_{i}) \right]$$

Maximum likelihood estimation

If the data are perfectly separable by a threshold for X, then the likelihood is maximized when $\beta_1 \to \infty$ or $-\infty$, and the MLE does not exist.

Otherwise the MLE exists and is given by

$$\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1) = \operatorname*{arg\,max}_{\beta_0, \beta_1} \sum_{i=1}^n Y_i (\beta_0 + \beta_1 X_i) - \log(1 + e^{\beta_0 + \beta_1 X_i})$$

In general, $\hat{\beta}$ does not have a closed-form expression.

Derivatives of the log-likelihood

 $= \nabla \mathcal{I}_{n}(\beta) = \begin{pmatrix} \frac{\partial \mathcal{I}_{n}}{\partial \gamma_{n}} \\ \frac{\partial \mathcal{I}_{n}}{\partial \gamma_{n}} \end{pmatrix} = \sum_{i=1}^{n} (\gamma_{i} - \rho(K_{i}|\beta)) \begin{pmatrix} 1 \\ \chi_{i} \end{pmatrix} \in \mathbb{R}^{2}$

Wile Y:-p(K. B)= Y:-1+ 1+0 Parkin

Derivatives of the log-likelihood

 $\frac{\partial^2 \mathcal{L}_n}{\partial \rho_0 \partial \beta_1} = \frac{\tilde{\mathcal{Z}}}{\tilde{\mathcal{Z}}_1} - \frac{\chi_{\cdot} e^{\rho_0 t \beta_1 \chi_1^{-1}}}{(l + e^{\rho_0 t \beta_1 \chi_1^{-1}})^2} = - \frac{\tilde{\mathcal{Z}}}{\tilde{\mathcal{Z}}_1} p(\chi_{\cdot}|\rho)(l - \rho(\chi_{\cdot}|\rho_1)) \cdot \chi_{\cdot}$

 $\frac{\partial^{2}l_{n}}{\partial \beta^{1}} = \frac{\chi^{2}}{(1 + e^{\beta_{0}t}\beta_{1}x_{2})^{2}} = -\sum_{i=1}^{n} p(k_{i}|\beta)(1 - p(k_{i}|\beta)) \times \chi^{2}$

 $\Rightarrow \nabla^{2} l_{n}(\beta) = - \sum_{\substack{i=1\\j \neq i}}^{n} p(\chi_{i}|\beta)(1-p(\chi_{i}|\beta)) \cdot \begin{pmatrix} 1 & \chi_{i} \\ \chi_{i} & \chi_{i}^{2} \end{pmatrix} \in \mathbb{R}^{2 \times 2}$

Concavity of the log-likelihood

The second derivative matrix (Hessian) is

$$\nabla^2 \ell_n(\beta) = -\sum_{i=1}^n p(X_i \mid \beta) (1 - p(X_i \mid \beta)) \begin{pmatrix} 1 & X_i \\ X_i & X_i^2 \end{pmatrix}$$

This satisfies, for every non-zero vector $u = (u_0, u_1) \in \mathbb{R}^2$,

$$u^{\top} \nabla^{2} \ell_{n}(\beta) u = -\sum_{i=1}^{n} p(X_{i} \mid \beta) (1 - p(X_{i} \mid \beta)) (u_{0}^{2} + 2u_{0}u_{1}X_{i} + u_{1}^{2}X_{i}^{2})$$
$$= -\sum_{i=1}^{n} p(X_{i} \mid \beta) (1 - p(X_{i} \mid \beta)) (u_{0} + u_{1}X_{i})^{2} < 0$$

This means that $\nabla^2 \ell_n(\beta)$ is *negative-definite*, and $\ell_n(\beta)$ is a strictly concave function of $\beta = (\beta_0, \beta_1)$.

Characterization of the MLEs

The MLE $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)$ (when it exists) is the unique solution of $0 = \nabla \ell_n(\beta) = \sum_{i=1}^n (Y_i - p(X_i \mid \beta)) \begin{pmatrix} 1 \\ X_i \end{pmatrix}$

Newton's method and Iterative Reweighted Least Squares

The MLE is often computed numerically using Newton's method:

$$\beta^{(t+1)} = \beta^{(t)} - \left[\nabla^2 \ell_n(\beta^{(t)})\right]^{-1} \nabla \ell_n(\beta^{(t)})$$

(For example, this is implemented in the glm function in R.)

Proposition

Given parameters $\beta^{(t)} = (\beta_0^{(t)}, \beta_1^{(t)})$, define sample weights and adjusted responses, for i = 1, ..., n, by

$$w_i^{(t)} = p(X_i \mid \beta^{(t)})(1 - p(X_i \mid \beta^{(t)}))$$

$$Z_i^{(t)} = \beta_0^{(t)} + \beta_1^{(t)}X_i + (Y_i - p(X_i \mid \beta^{(t)}))/w_i^{(t)}$$

Then $\beta^{(t+1)}$ solves the weighted least-squares problem

$$\beta^{(t+1)} = \arg\min_{\beta_0,\beta_1} \sum_{i=1}^n w_i^{(t)} (\beta_0 + \beta_1 X_i - Z_i^{(t)})^2$$

Newton's method and Iterative Reweighted Least Squares

Proof: Weighted least squares solutions solue: $O = \sum_{i=1}^{n} w_{i}^{(e)} \left(\beta_{o} + \beta_{i} X_{i} - z_{i}^{(e)} \right)$ βο + ρ(·) X . + Y .- ρ(X / β (·)) $= \left(\beta_{0} - \beta_{1}^{(4)}\right) \stackrel{\sim}{\underset{\sim}{\sum}} w_{1}^{(4)} + \left(\beta_{1} - \beta_{1}^{(1)}\right) \stackrel{\sim}{\underset{\sim}{\sum}} w_{1}^{(4)} \chi = \stackrel{\sim}{\underset{\sim}{\sum}} \left(Y_{1} - \rho(\chi_{1} | \beta^{(4)})\right)$ $O = \sum_{i=1}^{n} w_{i}^{(0)} X_{i} \left(\beta_{s} + \beta_{i} X_{j} - \xi_{i}^{(0)} \right)$ $= (\beta_{0} - \beta_{0}^{(u)}) \cdot \tilde{\Xi} w_{i}^{(u)} \chi_{i} + (\beta_{i} - \beta_{i}^{(u)}) \cdot \tilde{\Sigma} w_{i}^{(u)} \chi_{i}^{2} - \tilde{\Sigma} (\gamma_{i} - \beta_{i}^{(u)}) \cdot \chi_{i}^{2}$ $\Rightarrow \tilde{\Xi}(Y_{i} - \rho(K_{i}|\rho^{(e)})) \begin{pmatrix} I \\ X_{i} \end{pmatrix} = \tilde{\Xi}_{i} w_{i} \begin{pmatrix} I \\ X_{i} \end{pmatrix} \begin{pmatrix} X_{i} \\ X_{i} \end{pmatrix} \begin{pmatrix} \rho_{0} - \rho_{0}^{(e)} \\ A_{i} - \beta_{i}^{(e)} \end{pmatrix}$ $= -\nabla^2 l_n(\rho(\omega)) \Rightarrow \rho^{(en)} \cdot \rho^{(e)} - (\nabla^2 n)^{-1} \partial^2 n_{13}$ 0.(r⁽¹⁾)

Fisher information matrix

The standard errors of $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)$ may be derived from the Fisher information matrix.

Let $f(X, Y | \beta)$ denote the likelihood for a single observation. Then the Fisher information matrix for $\beta = (\beta_0, \beta_1)$ is

$$\begin{split} I(\beta) &= -\mathbb{E} \big[\nabla^2 \log f(X, Y \mid \beta) \big] \\ &= \mathbb{E} \bigg[p(X \mid \beta) (1 - p(X \mid \beta)) \begin{pmatrix} 1 & X \\ X & X^2 \end{pmatrix} \bigg] \in \mathbb{R}^{2 \times 2} \end{split}$$

where \mathbb{E} denotes the expectation over the distribution of X. This distribution is usually unknown, and $I(\beta)$ is estimated using

$$\widehat{I}(\beta) = \frac{1}{n} \sum_{i=1}^{n} p(X_i \mid \beta) (1 - p(X_i \mid \beta)) \begin{pmatrix} 1 & X_i \\ X_i & X_i^2 \end{pmatrix}$$

The matrix $n \cdot \hat{l}(\beta)$ is often called the **observed information**.

Asymptotic normality of the MLE

Theorem
Let
$$(X_1, Y_1), \dots, (X_n, Y_n)$$
 be IID, where
 $\mathbb{P}[Y = 1 \mid X] = p(X \mid \beta) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$

(i.e. the logistic regression model is correctly specified). Then, under regularity conditions,

$$\sqrt{n}(\hat{\beta}-\beta) \rightarrow \mathcal{N}(0, I(\beta)^{-1})$$

in distribution as $n \to \infty$.

Let $[\cdot]_{00}, [\cdot]_{10}, [\cdot]_{10}, [\cdot]_{11}$ denote the entries of a 2 × 2 matrix. Then for large *n*, the standard errors of $\hat{\beta}_0, \hat{\beta}_1$ are approximately

$$se_0 = \sqrt{[(n \cdot I(\beta))^{-1}]_{00}}, \quad se_1 = \sqrt{[(n \cdot I(\beta))^{-1}]_{11}}$$

Standard error estimates and confidence intervals

A model-based estimate for se_1 is given by

$$\hat{\mathfrak{se}}_1 = \sqrt{[(n \cdot \widehat{I}(\hat{\beta}))^{-1}]_{11}}$$

where $n \cdot \hat{I}(\hat{\beta})$ is the observed information evaluated at the MLE $\hat{\beta}$.

Assuming that the logistic regression model for $\mathbb{P}[Y = 1 | X]$ is correct with true parameter β , we expect $\hat{\beta} \to \beta$ and $\hat{I}(\beta) \to I(\beta)$ in probability as $n \to \infty$, so $\hat{se}_1/se_1 \to 1$.

A confidence interval for β_1 with asymptotic coverage $1-\alpha$ is then given by

$$\hat{\beta}_1 \pm z^{(\alpha/2)} \hat{\mathrm{se}}_1$$

Standard error estimates and confidence intervals for β_0 may be obtained analogously.

Hypothesis tests

A test of

$$H_0:\beta_1=0 \qquad \text{vs.} \qquad H_1:\beta_1>0$$

may be based on the **z-statistic** $\frac{\hat{\beta}_1}{\hat{s}e_1}$. Under H_0 , $\hat{\beta}_1/se_1 \rightarrow \mathcal{N}(0,1)$ in distribution as $n \rightarrow \infty$. Then by Slutsky's Lemma,

$$\hat{eta}_1/\hat{ ext{se}}_1 o \mathcal{N}(0,1)$$

so an asymptotic level- α test may reject H_0 when $\frac{\hat{\beta}_1}{\hat{se}_1} > z^{(\alpha)}$, the upper- α point of the standard normal distribution.

Under misspecification of the logistic regression model for $\mathbb{P}[Y = 1 \mid X]$, this estimate $\hat{se}_1 = \sqrt{[(n \cdot \hat{l}(\hat{\beta}))^{-1}]_{11}}$ may not be accurate for the standard error of $\hat{\beta}_1$ even for large *n*, and robust estimators (e.g. using nonparametric bootstrap) may be preferred.

Predicting credit card default (ISLR)

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	$<\!0.0001$

Prediction on test data

Given a new observation $X_{\rm test} = x$, the probability that $Y_{\rm test} = 1$ under the logistic regression model is

$$\mathbb{P}[Y_{\text{test}} = 1 \mid X_{\text{test}} = x] = p(x \mid \beta)$$

which we may estimate by

$$p(x\mid \hat{eta}) = rac{e^{\hat{eta}_0+\hat{eta}_1x}}{1+e^{\hat{eta}_0+\hat{eta}_1x}}$$

For large *n*, the standard error of $p(x \mid \hat{\beta})$ may be computed from the approximate normal distribution for $\hat{\beta}_0 + \hat{\beta}_1 x$ and the delta method. This may then be used to construct asymptotic confidence intervals for $p(x \mid \beta)$.

Multiple predictors and multiple classes

Logistic regression with multiple predictors

For *p* predictors $X = (x_1, ..., x_p) \in \mathbb{R}^p$ and a binary response $Y \in \{0, 1\}$, the logistic regression model takes the form

$$\mathbb{P}[Y=1 \mid X] = p(X \mid \beta) = \frac{e^{\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p}}$$

with parameters $\beta = (\beta_0, \ldots, \beta_p) \in \mathbb{R}^{p+1}$.

These parameters are commonly estimated by the MLE

$$\hat{\beta} = \operatorname*{arg\,max}_{\beta \in \mathbb{R}^{p+1}} \sum_{i=1}^{n} Y_i (\beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}) - \log(1 + e^{\beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}})$$

which exists as long as the data are not perfectly separable by thresholding a linear function of X. There is in general no closed-form expression for $\hat{\beta}$, and $\hat{\beta}$ is often computed by Newton's method for small p or gradient ascent for large p.

Fisher information matrix

The Fisher information matrix for $\beta = (\beta_0, \dots, \beta_p)$ is given by

$$I(\beta) = -\mathbb{E} \Big[\nabla^2 \log f(X, Y \mid \beta) \Big]$$

= $\mathbb{E} \left[p(X \mid \beta)(1 - p(X \mid \beta)) \cdot \begin{pmatrix} 1 & x_1 & x_2 & \cdots & x_p \\ x_1 & x_1^2 & x_1 x_2 & \cdots & x_1 x_p \\ x_2 & x_2 x_1 & x_2^2 & \cdots & x_2 x_p \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_p & x_p x_1 & x_p x_2 & \cdots & x_p^2 \end{pmatrix} \right]$

with expectation \mathbb{E} over the distribution of $X = (x_1, \ldots, x_p)$.

This may be estimated by $\hat{l}(\beta)$ which replaces this expectation by the sample average over the training data X_1, \ldots, X_n .

Asymptotic normality of the MLE

Theorem

Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be IID, where $\mathbb{P}[Y = 1 | X] = p(X | \beta)$ (i.e. the logistic regression model is correctly specified). Then, under regularity conditions,

$$\sqrt{n}(\hat{\beta}-\beta) \rightarrow \mathcal{N}(0, I(\beta)^{-1})$$

in distribution as $n \to \infty$.

Thus the standard error of $\hat{\beta}_j$ for the j^{th} predictor is approximately

$$\mathrm{se}_j = \sqrt{[(n \cdot I(\beta))^{-1}]_{jj}}$$

We may estimate this by $\hat{s}_{ij} = \sqrt{[(n \cdot \hat{l}(\hat{\beta}))^{-1}]_{jj}}$, and use this estimate in confidence intervals and hypothesis tests for β_j .

Predicting credit card default (ISLR)

	Coefficient	Std. error	z-statistic	p-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
<pre>student[Yes]</pre>	-0.6468	0.2362	-2.74	0.0062

As in our discussion of linear regression, the meaning of β_j depends on the other predictors in the model, and represents the effect of the j^{th} predictor on p(X) after controlling for the other predictors.

	Coefficient	Std. error	z-statistic	p-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

In this example, being a student decreases the predicted probability of default (Y = 1) when controlling for credit card balance and income, but increases this probability in a univariate regression model. This occurs because students tend to carry higher balances.

Multinomial logistic regression

Suppose Y has K classes, encoded as $\{0, 1, ..., K - 1\}$ where is no meaning to the ordering of these classes.

We may extend logistic regression to the **multinomial logistic** regression model,

$$\mathbb{P}[Y = 0 \mid X] = \frac{1}{1 + \sum_{\ell=1}^{K-1} e^{\beta_{\ell 0} + \beta_{\ell 1} x_1 + \dots + \beta_{\ell p} x_p}}$$
$$\mathbb{P}[Y = k \mid X] = \frac{e^{\beta_{k 0} + \beta_{k 1} x_1 + \dots + \beta_{k p} x_p}}{1 + \sum_{\ell=1}^{K-1} e^{\beta_{\ell 0} + \beta_{\ell 1} x_1 + \dots + \beta_{\ell p} x_p}} \text{ for } k = 1, \dots, K-1$$

This has parameters $(\beta_{k0}, \ldots, \beta_{kp})$ for each class $k = 1, \ldots, K - 1$, where the log-odds of Y = k to Y = 0 is modeled linearly as

$$\log \frac{\mathbb{P}[Y=k \mid X]}{\mathbb{P}[Y=0 \mid X]} = \beta_{k0} + \beta_{k1}x_1 + \ldots + \beta_{kp}x_p$$

Log-odds and parameter differences

One may think of Class 0 as a baseline class, where we fix its parameters by convention

$$(\beta_{00}, \beta_{01}, \ldots, \beta_{0p}) = (0, 0, \ldots, 0)$$

Then for each pair of classes $k, \ell \in \{0, 1, \dots, K-1\}$,

$$\log \frac{\mathbb{P}[Y=k \mid X]}{\mathbb{P}[Y=\ell \mid X]} = (\beta_{k0} - \beta_{\ell 0}) + (\beta_{k1} - \beta_{\ell 1})x_1 + \ldots + (\beta_{kp} - \beta_{\ell p})x_p$$

so the parameter differences $\beta_{kj} - \beta_{\ell j}$ model the log-odds of Y = k to $Y = \ell$.

The choice of baseline class is unimportant, in the sense that choosing a different baseline class will shift $(\beta_{0j}, \ldots, \beta_{k-1,j})$ by a constant while keeping the differences $\beta_{ki} - \beta_{\ell i}$ unchanged.