
S&DS 242/542: Theory of Statistics

Lecture 24: Logistic regression



Classification models

Let (X ,Y ) be a predictor-response pair. A classification model is
a model where the response Y is categorical rather quantitative.

In the simplest setting, Y has two possible classes, which we may
encode as 0 and 1. The model may be specified by

P[Y = 1 | X ] = p(X ), P[Y = 0 | X ] = 1� p(X )

where p(X ) is an unknown function of the predictors X .

Our goal may be to learn p(X ) from data (X1,Y1), . . . , (Xn,Yn),
and to predict a new response Ytest 2 {0, 1} given Xtest.
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Predicting credit card default (ISLR)

Y : Whether an individual defaults on their credit card payment
X : Monthly credit card balance, annual income, student status
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Linear regression?

Suppose X 2 Rp consists of p predictors. One approach for
modeling p(X ) is to assume a linear model

P[Y = 1 | X ] = p(X | �) = �0 + �1x1 + . . .+ �pxp

and to fit linear regression to (X ,Y ), treating Y 2 {0, 1} as a
quantitative response.

Potential downsides of this approach:

I The modeled probability p(X | �) may fall outside [0, 1]

I Di�cult to extend to settings where Y has more than 2 classes

This approach is more commonly used in applications with only 2
classes and where responses are harder to predict, i.e. p(X ) tends
to be far from 0 or 1.
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Logistic regression

Logistic regression instead models p(X ) by a logistic function

P[Y = 1 | X ] = p(X | �) = e
�0+�1x1+...+�pxp

1 + e�0+�1x1+...+�pxp

which always takes values in (0, 1).

Equivalently,

log
p(X | �)

1� p(X | �) = �0 + �1x1 + . . .+ �pxp

Thus the model assumes that log p(X )
1�p(X ) — the log-odds of Y = 1

to Y = 0 — is a linear function of the predictors X = (x1, . . . , xp).
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Simple logistic regression



Simple logistic regression model

Consider a single predictor X 2 R. The logistic regression model is

P[Y = 1 | X ] = p(X | �) = e
�0+�1X

1 + e�0+�1X

with parameters � = (�0,�1). For �1 > 0, p(X | �) looks like:
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I �0 is the log-odds of Y = 1 to Y = 0 when X = 0

I �1 is the increase in this log-odds per unit increase of X
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Maximum likelihood estimation

The regression coe�cients � = (�0,�1) are commonly estimated
using maximum likelihood.

Suppose (X1,Y1), . . . , (Xn,Yn) are IID with

X ⇠ fX (x), P[Y = 1 | X ] = p(X | �) = e
�0+�1X

1 + e�0+�1X

The log-likelihood is:
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Maximum likelihood estimation

If the data are perfectly separable by a threshold for X , then the
likelihood is maximized when �1 ! 1 or �1, and the MLE does
not exist.
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Otherwise the MLE exists and is given by

�̂ = (�̂0, �̂1) = argmax
�0,�1

nX

i=1

Yi (�0 + �1Xi )� log(1 + e
�0+�1Xi )

In general, �̂ does not have a closed-form expression.
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Derivatives of the log-likelihood
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Derivatives of the log-likelihood
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Concavity of the log-likelihood

The second derivative matrix (Hessian) is

r2`n(�) = �
nX

i=1

p(Xi | �)(1� p(Xi | �))
✓
1 Xi

Xi X
2
i

◆

This satisfies, for every non-zero vector u = (u0, u1) 2 R2,

u
>r2`n(�)u = �

nX

i=1

p(Xi | �)(1� p(Xi | �))(u20 + 2u0u1Xi + u
2
1X

2
i )

= �
nX

i=1

p(Xi | �)(1� p(Xi | �))(u0 + u1Xi )
2 < 0

This means that r2`n(�) is negative-definite, and `n(�) is a
strictly concave function of � = (�0,�1).
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Characterization of the MLEs

The MLE �̂ = (�̂0, �̂1) (when it exists) is the unique solution of

0 = r`n(�) =
nX

i=1

(Yi � p(Xi | �))
✓
1
Xi

◆
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Newton’s method and Iterative Reweighted Least Squares

The MLE is often computed numerically using Newton’s method:

�(t+1) = �(t) �
⇥
r2`n(�

(t))
⇤�1r`n(�

(t))

(For example, this is implemented in the glm function in R.)

Proposition

Given parameters �(t) = (�(t)
0 ,�(t)

1 ), define sample weights and

adjusted responses, for i = 1, . . . , n, by

w
(t)
i = p(Xi | �(t))(1� p(Xi | �(t)))

Z
(t)
i = �(t)

0 + �(t)
1 Xi +

�
Yi � p(Xi | �(t))

�
/w (t)

i

Then �(t+1)
solves the weighted least-squares problem

�(t+1) = argmin
�0,�1

nX

i=1

w
(t)
i (�0 + �1Xi � Z

(t)
i )2
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Newton’s method and Iterative Reweighted Least Squares

Proof:
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Fisher information matrix

The standard errors of �̂ = (�̂0, �̂1) may be derived from the
Fisher information matrix.

Let f (X ,Y | �) denote the likelihood for a single observation.
Then the Fisher information matrix for � = (�0,�1) is

I (�) = �E
⇥
r2 log f (X ,Y | �)

⇤

= E

p(X | �)(1� p(X | �))

✓
1 X

X X
2

◆�
2 R2⇥2

where E denotes the expectation over the distribution of X . This
distribution is usually unknown, and I (�) is estimated using

bI (�) = 1

n

nX

i=1

p(Xi | �)(1� p(Xi | �))
✓
1 Xi

Xi X
2
i

◆

The matrix n · bI (�) is often called the observed information.
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Asymptotic normality of the MLE

Theorem

Let (X1,Y1), . . . , (Xn,Yn) be IID, where

P[Y = 1 | X ] = p(X | �) = e
�0+�1X

1 + e�0+�1X

(i.e. the logistic regression model is correctly specified). Then,

under regularity conditions,

p
n(�̂ � �) ! N

�
0, I (�)�1

�

in distribution as n ! 1.

Let [·]00, [·]01, [·]10, [·]11 denote the entries of a 2⇥ 2 matrix. Then
for large n, the standard errors of �̂0, �̂1 are approximately

se0 =
q

[(n · I (�))�1]00, se1 =
q
[(n · I (�))�1]11
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Standard error estimates and confidence intervals

A model-based estimate for se1 is given by

ŝe1 =
q

[(n · bI (�̂))�1]11

where n · bI (�̂) is the observed information evaluated at the MLE �̂.

Assuming that the logistic regression model for P[Y = 1 | X ] is
correct with true parameter �, we expect �̂ ! � and bI (�) ! I (�)
in probability as n ! 1, so ŝe1/se1 ! 1.

A confidence interval for �1 with asymptotic coverage 1� ↵ is
then given by

�̂1 ± z
(↵/2)ŝe1

Standard error estimates and confidence intervals for �0 may be
obtained analogously.

16



Hypothesis tests

A test of
H0 : �1 = 0 vs. H1 : �1 > 0

may be based on the z-statistic �̂1
ŝe1

. Under H0, �̂1/se1 ! N (0, 1)
in distribution as n ! 1. Then by Slutsky’s Lemma,

�̂1/ŝe1 ! N (0, 1)

so an asymptotic level-↵ test may reject H0 when �̂1
ŝe1

> z
(↵), the

upper-↵ point of the standard normal distribution.

Under misspecification of the logistic regression model for

P[Y = 1 | X ], this estimate ŝe1 =
q
[(n · bI (�̂))�1]11 may not be

accurate for the standard error of �̂1 even for large n, and robust
estimators (e.g. using nonparametric bootstrap) may be preferred.
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Predicting credit card default (ISLR)
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Prediction on test data

Given a new observation Xtest = x , the probability that Ytest = 1
under the logistic regression model is

P[Ytest = 1 | Xtest = x ] = p(x | �)

which we may estimate by

p(x | �̂) = e
�̂0+�̂1x

1 + e �̂0+�̂1x

For large n, the standard error of p(x | �̂) may be computed from
the approximate normal distribution for �̂0 + �̂1x and the delta
method. This may then be used to construct asymptotic
confidence intervals for p(x | �).
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Multiple predictors and multiple classes



Logistic regression with multiple predictors

For p predictors X = (x1, . . . , xp) 2 Rp and a binary response
Y 2 {0, 1}, the logistic regression model takes the form

P[Y = 1 | X ] = p(X | �) = e
�0+�1x1+...+�pxp

1 + e�0+�1x1+...+�pxp

with parameters � = (�0, . . . ,�p) 2 Rp+1.

These parameters are commonly estimated by the MLE

�̂ = argmax
�2Rp+1

nX

i=1

Yi (�0+�1xi1+. . .+�pxip)�log(1+e
�0+�1xi1+...+�pxip)

which exists as long as the data are not perfectly separable by
thresholding a linear function of X . There is in general no
closed-form expression for �̂, and �̂ is often computed by Newton’s
method for small p or gradient ascent for large p.
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Fisher information matrix

The Fisher information matrix for � = (�0, . . . ,�p) is given by

I (�) = �E
⇥
r2 log f (X ,Y | �)

⇤

= E

2
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with expectation E over the distribution of X = (x1, . . . , xp).

This may be estimated by bI (�) which replaces this expectation by
the sample average over the training data X1, . . . ,Xn.
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Asymptotic normality of the MLE

Theorem

Let (X1,Y1), . . . , (Xn,Yn) be IID, where P[Y = 1 | X ] = p(X | �)
(i.e. the logistic regression model is correctly specified). Then,

under regularity conditions,

p
n(�̂ � �) ! N

�
0, I (�)�1

�

in distribution as n ! 1.

Thus the standard error of �̂j for the j
th predictor is approximately

sej =
q
[(n · I (�))�1]jj

We may estimate this by ŝej =
q
[(n · bI (�̂))�1]jj , and use this

estimate in confidence intervals and hypothesis tests for �j .
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Predicting credit card default (ISLR)

As in our discussion of linear regression, the meaning of �j depends
on the other predictors in the model, and represents the e↵ect of
the j

th predictor on p(X ) after controlling for the other predictors.

In this example, being a student decreases the predicted probability
of default (Y = 1) when controlling for credit card balance and
income, but increases this probability in a univariate regression
model. This occurs because students tend to carry higher balances.
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Multinomial logistic regression

Suppose Y has K classes, encoded as {0, 1, . . . ,K � 1} where is
no meaning to the ordering of these classes.

We may extend logistic regression to the multinomial logistic
regression model,

P[Y = 0 | X ] =
1

1 +
PK�1

`=1 e�`0+�`1x1+...+�`pxp

P[Y = k | X ] =
e
�k0+�k1x1+...+�kpxp

1 +
PK�1

`=1 e�`0+�`1x1+...+�`pxp
for k = 1, . . . ,K � 1

This has parameters (�k0, . . . ,�kp) for each class k = 1, . . . ,K � 1,
where the log-odds of Y = k to Y = 0 is modeled linearly as

log
P[Y = k | X ]

P[Y = 0 | X ]
= �k0 + �k1x1 + . . .+ �kpxp
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Log-odds and parameter di↵erences

One may think of Class 0 as a baseline class, where we fix its
parameters by convention

(�00,�01, . . . ,�0p) = (0, 0, . . . , 0)

Then for each pair of classes k , ` 2 {0, 1, . . . ,K � 1},

log
P[Y = k | X ]

P[Y = ` | X ]
= (�k0��`0)+(�k1��`1)x1+ . . .+(�kp��`p)xp

so the parameter di↵erences �kj � �`j model the log-odds of
Y = k to Y = `.

The choice of baseline class is unimportant, in the sense that
choosing a di↵erent baseline class will shift (�0j , . . . ,�k�1,j) by a
constant while keeping the di↵erences �kj � �`j unchanged.
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