
S&DS 242/542: Theory of Statistics
Lecture 25: Generative models for classification



Review: Logistic regression

Consider predictors X = (x1, . . . , xp) 2 Rp
and a classification task

with binary response Y 2 {0, 1}.

In logistic regression, we model

p(X ) = P[Y = 1 | X ] =
e�0+�1x1+...+�pxp

1 + e�0+�1x1+...+�pxp

Equivalently, the log-odds ratio of Y = 1 to Y = 0 is modeled as

log
p(X )

1� p(X )
= log

P[Y = 1 | X ]

P[Y = 0 | X ]
= �0 + �1x1 + . . .+ �pxp

This approach makes minimal assumptions about the distribution

of X , and directly models the distribution of Y given X .
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Generative classification models

An alternative approach to classification is to model the

distribution of X in each class, i.e. the distribution of X given Y .

Let f0(x) and f1(x) be the PDFs or PMFs of X in classes 0 and 1,

and let ↵ = P[Y = 1] be the marginal probability of class 1.

Generative models for classification then estimate P[Y = 1 | X ]

by learning f0(x), f1(x), and ↵, and applying Bayes’ rule

p(X ) = P[Y = 1 | X ] =
↵f1(X )

(1� ↵)f0(X ) + ↵f1(X )

Methods di↵er in how they model and estimate f0(x) and f1(x).
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Generative classification models
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This approach makes stronger assumptions about the distribution

of X . It can yield more accurate estimates of p(X ) if these

assumptions are correct and the distribution of X within each class

can be accurately estimated.

3



Simple linear discriminant analysis



Linear discriminant analysis

Consider a single predictor X 2 R and binary response Y 2 {0, 1}.
Linear discriminant analysis assumes that:

I P[Y = 1] = ↵ and P[Y = 0] = 1� ↵

I X has a normal distribution in each class Y = 0 and Y = 1

I The variance of X is the same in both classes

Thus

f0(x) =
1p
2⇡�2

e�
(x�µ0)

2

2�2 and f1(x) =
1p
2⇡�2

e�
(x�µ1)

2

2�2

This model for (X ,Y ) has four unknown parameters ↵, µ0, µ1,�2
.
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Log-odds ratio for LDA

5



Log-odds ratio for LDA

Thus, under the LDA model,

log
P[Y = 1 | X ]

P[Y = 0 | X ]
= log

↵

1� ↵
� µ2

1

2�2
+

µ2
0

2�2
| {z }

=�0

+
µ1 � µ0

�2
| {z }

=�1

X

Equivalently,

P[Y = 1 | X ] =
e�0+�1X

1 + e�0+�1X

This has the same form as logistic regression, where the log-odds

ratio of Y = 1 to Y = 0 is linear in X .

However, LDA estimates �0,�1 in a di↵erent way, by estimating

the parameters ↵, µ0, µ1,�2
and computing �0,�1 from these

estimates.
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Maximum likelihood estimation

Suppose (X1,Y1), . . . , (Xn,Yn) are IID and distributed according

to the LDA model. To compute the log-likelihood:
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Maximum likelihood estimation

Thus the log-likelihood is

`n(↵, µ0, µ1,�
2
) = N1 log↵+ N0 log(1� ↵)� n

2
log 2⇡�2

�
X

i :Yi=1

(Xi � µ1)
2

2�2
�

X

i :Yi=0

(Xi � µ0)
2

2�2

The MLEs are given by:

I ↵̂ =
N1

N0+N1
=

N1
n , the sample proportion of class 1.

I µ̂1 =
1
N1

P
i :Yi=1 Xi and µ̂0 =

1
N0

P
i :Yi=0 Xi , the sample

average within each class.

I �̂2
=

1
n [
P

i :Yi=1(Xi � µ̂1)
2
+

P
i :Yi=0(Xi � µ̂0)

2
]. For small

sample sizes n, it is also common to use instead the unbiased

estimator with normalization
1

n�2 instead of
1
n .
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LDA vs. logistic regression
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Estimated log-odds for sample size n = 100, across 100 trials
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LDA vs. logistic regression
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Fisher information matrix
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Fisher information matrix
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Standard errors for parameter estimates

The Fisher information matrix is the diagonal matrix

I (↵, µ0, µ1,�
2
) =

0

BB@

1
↵(1�↵)

1�↵
�2

↵
�2

1
2�4

1

CCA

Thus for large n, the distributions of the model parameter MLEs

are approximately

↵̂ ⇠ N (↵, ↵(1�↵)
n ), µ̂0 ⇠ N (µ0,

�2

n(1�↵))

µ̂1 ⇠ N (µ1,
�2

n↵), �̂2 ⇠ N (�2, 2�
4

n ),

and these MLEs are approximately uncorrelated with each other.
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Standard error of �̂1

Recalling �1 = (µ1 � µ0)/�2
, and applying the preceding forms of

the standard errors for µ0, µ1,�2
and the delta method, we have

�̂1 =
µ̂1 � µ̂0

�̂2
⇠ N

⇣
�1,

1

n�2↵(1� ↵)
+

2(µ1 � µ0)
2

n�4

⌘⌘

approximately for large n. Fixing �2
and ↵, the variance of �̂1

grows linearly in (µ1 � µ0)
2
.

For logistic regression, recall �̂1 ⇠ N (�1,
1
n [I (�)

�1
]11) where

I (�) = E

p(X | �)(1� p(X | �))

✓
1 X
X X 2

◆�

and [I (�)�1
]11 is the lower-right entry. It may be shown that this

variance of �̂1 grows exponentially in (µ1 � µ0)
2
, and thus is much

larger than that of LDA when the class means are well-separated.
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Generative classification models



LDA with multiple predictors and classes

More generally, for predictors X 2 Rp
and K classes

Y 2 {0, 1, . . . ,K � 1}, linear discriminant analysis assumes that:

I P[Y = k] = ↵k for each k = 0, 1, . . . ,K � 1

I X has a multivariate normal distribution in Rp
for each class

I The covariance matrix ⌃ 2 Rp⇥p
of this multivariate normal

distribution is the same in all classes

Thus

fk(x) =
1p

det(2⇡⌃)
e�

1
2 (x�µk )>⌃�1(x�µk ) for k = 0, 1, . . . ,K � 1

The parameters are the class probabilities ↵ = (↵0, . . . ,↵K�1),

class means µ0, . . . , µK�1 2 Rp
, and class covariance ⌃ 2 Rp⇥p

.
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Log-odds ratios for LDA
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Log-odds ratios for LDA

Thus, under the LDA model, for X = (x1, . . . , xp),

log
P[Y = k | X ]

P[Y = 0 | X ]
= log

↵k

↵0
� 1

2
µk⌃

�1µk +
1

2
µ0⌃

�1µ0

| {z }
=�k0

+ [⌃
�1

(µk � µ0)]1| {z }
=�k1

x1 + . . .+ [⌃
�1

(µk � µ0)]p| {z }
=�kp

xp

This has the same form as multinomial logistic regression, but

�k0, . . . ,�kp are estimated via the MLEs

↵̂k =
Nk

n
, µ̂k =

1

Nk

X

i :Yi=k

Xi ,

⌃̂ =
1

n

K�1X

k=0

X

i :Yi=k

(Xi � µ̂k)(Xi � µ̂k)
>
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LDA with multiple predictors and classes

Suppose we predict Ŷ (X ) = k if class k has the highest probability

P[Y = k | X ]. (This minimizes the error P[Y 6= Ŷ (X )].)

Then Ŷ (X ) = k if log
P[Y=k|X ]
P[Y=`|X ] > 0 for all ` 6= k , so the decision

boundaries of LDA are linear functions of x .
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Quadratic discriminant analysis

Quadratic discriminant analysis extends LDA by assuming that the

distribution of X within each class k is

X ⇠ N (µk ,⌃k)

with a possibly di↵erent covariance ⌃k 2 Rp⇥p
for each class.

The model parameters may be estimated via the MLEs

↵̂k =
Nk

n
, µ̂k =

1

Nk

X

i :Yi=k

Xi ,

⌃̂k =
1

Nk

X

i :Yi=k

(Xi � µ̂k)(Xi � µ̂k)
>

where the covariance ⌃k is now estimated separately for each class.
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Log-odds ratios for QDA

The log-odds ratios

log
P[Y = k | X ]

P[Y = 0 | X ]
= log

↵k

↵0
� 1

2
log

det⌃k

det⌃0
� 1

2
(X � µk)

>
⌃
�1
k (X � µk)

+
1

2
(X � µ0)

>
⌃
�1
0 (X � µ0)

and class decision boundaries are quadratic functions of X .
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Bias-variance tradeo↵s

Decision boundaries for LDA and QDA

Left: Data from two classes with common covariance

Right: Data from two classes with di↵ering covariances

LDA is a special case of QDA, with fewer model parameters. Its

predictions have smaller variance than QDA, but larger bias when

the variance-covariance matrices of the classes are not the same.
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Naive Bayes

Estimating a general distribution for X = (x1, . . . , xp) 2 Rp
may be

challenging if p is large. LDA and QDA achieve this by making the

strong assumption that f0(X ), . . . , fK�1(X ) are normal.

A popular alternative called naive Bayes instead assumes that the

distribution of the p predictors in each class are independent, i.e.

fk(X ) = fk1(x1)⇥ . . .⇥ fkp(xp)

for some univariate distributions fk1(x1), . . . , fkp(xp). Thus it
models only the marginal distribution of each predictor within each

class, and not their joint distribution.

The distributions fkj(xj) do not need to be normal. They are

sometimes modeled and estimated assuming a parametric model,

and sometimes estimated nonparametrically.
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Log-odds ratios for naive Bayes

The log-odds ratio of Y = k to Y = 0 takes the form

log
P[Y = k | X ]

P[Y = 0 | X ]
= log

↵k fk1(x1) . . . fkp(xp)

↵0f01(x1) . . . f0p(xp)

= log
↵k

↵0| {z }
=�k0

+

pX

j=1

log
fkj(xj)

f0j(xj)| {z }
=gkj (xj )

If the distributions fkj(xj) are completely general, then gkj(xj) is
also a general function of xj . Thus the log-odds ratio is an additive
function of x1, . . . , xp which may be nonlinear in each predictor.

If fkj(xj) is the N (µkj ,�2
j ) density, then gkj(x) =

µkj�µ0j

�2
j

· x and

this becomes a special case of LDA where ⌃ is diagonal.

23


