S&DS 242/542: Homework 3

Due Wednesday, February 5, at 1PM

1. Testing gender ratios (based on Rice 9.45). In a classical genetics study, Geissler (1889) studied hospital records in Saxony and compiled data on the gender ratio. The following table shows the number of male children in 6115 families having 12 children:

Number of male children	Number of families
0	7
1	45
2	181
3	478
4	829
5	1112
6	1343
7	1033
8	670
9	286
10	104
11	24
12	3

Let X_1, \ldots, X_{6115} denote the number of male children in these 6115 families. (Thus the table indicates that 7 values of X_1, \ldots, X_{6115} are equal to 0, that 45 values are equal to 1, etc.)

(a) Suggest two reasonable test statistics T_1 and T_2 for testing the null hypothesis

 $H_0: X_1, \dots, X_{6115} \stackrel{IID}{\sim} \text{Binomial}(12, 0.5).$

This is intentionally open-ended: try to pick T_1 and T_2 to detect different possible alternatives to the above null hypothesis. Compute the values of T_1 and T_2 on the above data.

(b) Perform a simulation of the null distributions of T_1 and T_2 , and plot histograms of the simulated null distributions. For either of your tests, can you reject H_0 at the significance level $\alpha = 0.05$? Include both your code and the histograms with your homework submission.

[You may perform 1000 simulations using a for loop as in Homework 2. In each simulation, sample $X_1, \ldots, X_{6115} \sim \text{Binomial}(12, 0.5)$, and compute T_1 and T_2 from these samples.

In addition to what was introduced in Homework 2, the following commands may be helpful in R:

To generate a numeric vector of 6115 independent Binomial(12, 0.5) samples:

X = rbinom(6115, 12, 0.5)

To count the number of elements of a vector X that are equal to, say, 8:

count = length(which(X==8))

To create a new numeric vector with fixed values, say, (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12):

k = c(0,1,2,3,4,5,6,7,8,9,10,11,12)

To evaluate the binomial coefficients $\binom{12}{k}$ for each value of k above:

bincoef = choose(12,k)

If you would like a primer to other commands in R, Section 2.3 of your ISLR textbook gives a friendly introduction.]

[Not for submission, but just food for thought: It is interesting to think about why H_0 may not hold even if, biologically, the probability of having a male child is exactly 50%. For example, what happens if families choose whether or not to have another child based on the numbers of male/female children they already have, and Geissler's study selected only those families with exactly 12 children?]

2. Distribution of the p-value.

(a) Consider any hypothesis test that rejects H_0 for large values of a test statistic Z having null distribution $\mathcal{N}(0, 1)$. Recall that the associated p-value of this test is the right tail probability $P = 1 - \Phi(Z)$ where $\Phi(\cdot)$ is the standard normal CDF.

Show that if H_0 is true, then $P \sim \text{Uniform}([0, 1])$. That is, viewing the p-value itself as the test statistic, its null distribution is Uniform([0, 1]). [Hint: Compute the CDF of P.]

(b) If instead H_1 is true, would P tend to take larger or smaller values as compared with its distribution under H_0 ? How would you perform a level- α test of H_0 vs. H_1 using P as the test statistic?

3. The t_n distribution for large n.

(a) Let $U_n \sim \frac{1}{n} \cdot \chi_n^2$. Using the Law of Large Numbers and the Continuous Mapping Theorem, show that $\sqrt{U_n} \to 1$ in probability as $n \to \infty$.

(b) A result called Slutsky's lemma states: If two sequences of random variables X_1, X_2, X_3, \ldots and Y_1, Y_2, Y_3, \ldots are such that $X_n \to c$ in probability and $Y_n \to Y$ in distribution, then $X_n Y_n \to cY$ in distribution. Furthermore, if $c \neq 0$, then $Y_n/X_n \to Y/c$ in distribution.

Suppose $T_n \sim t_n$ (the t-distribution with *n* degrees-of-freedom). Using Slutsky's lemma and your result in part (a), show that $T_n \to \mathcal{N}(0, 1)$ in distribution as $n \to \infty$.

4. The t_1 distribution.

(a) Let $T \sim t_1$ (the t-distribution with 1 degree-of-freedom). Explain why T has the same distribution as $\frac{X}{|Y|}$ where $X, Y \stackrel{IID}{\sim} \mathcal{N}(0, 1)$, and why T also has the same distribution as $\frac{X}{Y}$.

(b) Applying a change-of-variables from (X, Y) to $(T, U) = (\frac{X}{Y}, Y)$, show that the t_1 distribution has the PDF $f(t) = \frac{1}{\pi} \cdot \frac{1}{t^2+1}$. Use this to show that $\mathbb{E}[T^2] = \infty$.

 $[t_1 \text{ is also called the Cauchy distribution. It is "heavy-tailed", meaning that the PDF <math>f(t)$ decays quite slowly to 0 as $t \to \pm \infty$.]

You may wish to use the change-of-variables formula: If (T, U) = g(X, Y) where $g(\cdot)$ is a 1-to-1 map, $f_{X,Y}(x, y)$ is the joint PDF of (X, Y), and $f_{T,U}(t, u)$ is the joint PDF of (T, U), then

$$f_{T,U}(t,u) = f_{X,Y}(g^{-1}(t,u)) \cdot \left| \det \begin{pmatrix} \frac{\partial x}{\partial t} & \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial t} & \frac{\partial y}{\partial u} \end{pmatrix} \right|$$