
S&DS 242/542: Homework 6

Due Wednesday, March 5, at 1PM

1. The geometric model. Suppose X1, . . . , Xn
IID∼ Geometric(p), where Geometric(p) is

the geometric distribution on the positive integers {1, 2, 3, . . .} defined by the PMF

f(x | p) = p(1− p)x−1

with a single parameter p ∈ [0, 1]. You may use without proof that this distribution has
mean 1/p and variance (1− p)/p2.

Compute the method-of-moments estimate of p, as well as the MLE of p. For large n, what
approximately is the sampling distribution of the MLE?

2. The negative binomial model. Suppose X1, . . . , Xn
IID∼ NegBinom(r, p), where

NegBinom(r, p) is the negative binomial distribution on {0, 1, 2, 3 . . .} defined by the PMF

f(x | p) =
(
x+ r − 1

x

)
(1− p)rpx.

Here r > 0 is a fixed and known positive integer, and p ∈ [0, 1] is the unknown parameter.
You may use without proof that this distribution has mean pr/(1−p) and variance pr/(1−p)2.

Compute the method-of-moments estimate of p, as well as the MLE of p. For large n, what
approximately is the sampling distribution of the MLE?

3. Generalized method-of-moments and the MLE.
Consider a parametric model f(x | θ) with parameter θ ∈ R, whose PDF takes a form

f(x | θ) = eθT (x)−A(θ)h(x) for x ∈ X (∗)

where X is the range of possible data values.

(a) Show that the model Pareto(θ, 1) is of this form, where X = [1,∞). What are the
functions T (x), A(θ), and h(x) for this Pareto model?

(b) For any model of the form (∗), differentiate the identity

1 =

∫
X
eθT (x)−A(θ)h(x)dx

1



with respect to θ on both sides, to obtain a formula for Eθ[T (X)] in terms of A(θ). Verify
that your formula is correct for the Pareto model in part (a).

[You may use d
dθ

∫
X eθT (x)−A(θ)h(x)dx =

∫
X

d
dθ
[eθT (x)−A(θ)h(x)]dx without justifying this ex-

change of differentiation in θ and integration in x.]

(c) Let X1, . . . , Xn
IID∼ f(x | θ) where f(x | θ) is of the form (∗), and consider the generalized

method-of-moments estimator θ̂ based on T (x), i.e. θ̂ is the value of θ for which

Eθ[T (X)] =
1

n

n∑
i=1

T (Xi).

If the MLE is the unique solution to the equation 0 = ℓ′n(θ) where ℓn(θ) is the log-likelihood,
show that this generalized method-of-moments estimator is the same as the MLE.

Use this to explain why the generalized method-of-moments estimator based on T (x) = log x
in the Pareto(θ, 1) model coincides with the MLE.

4. Confidence intervals for a binomial proportion.

Let X1, . . . , Xn
IID∼ Bernoulli(p), and let p̂ = X̄. We compare two different ways to construct

a 95% confidence interval for p, both based on the Central Limit Theorem result

√
n(p̂− p) → N (0, p(1− p)). (∗∗)

(a) Use the plugin estimate p̂(1− p̂) for the variance p(1−p) to write down a 95% confidence
interval for p. This is the approach discussed in Lecture 13.

(b) Instead of using this plugin estimate, note that equation (∗∗) implies, for large n,

P
[
−
√

p(1− p)z(α/2) ≤
√
n(p̂− p) ≤

√
p(1− p)z(α/2)

]
≈ 1− α.

Solve the two equations
√
n(p̂ − p) = ±

√
p(1− p)z(α/2) for p in terms of p̂, to obtain a

different 95% confidence interval for p.

(c) Perform a simulation study to determine the true probability that the confidence inter-
vals in parts (a) and (b) cover p, for the 9 combinations of sample sizes n = 10, 40, 100 and
true parameters p = 0.1, 0.3, 0.5. Report the simulated coverage probabilities in two tables.
Which interval construction yields true coverage closer to 95% for small values of n?

[For each combination of n and p, it may be helpful to perform at least 100,000 simulations.
In R, you may simulate p̂ directly as phat = rbinom(1,n,p)/n.]
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