S&DS 602: Homework 3

Due Wednesday, September 18 at 2PM, via Gradescope

1. (Vershynin 6.4.6) Let X_1, \ldots, X_n be independent subgaussian random variables with $\mathbb{E}X_i = 0$, and let $\varepsilon_1, \ldots, \varepsilon_n$ be i.i.d. Rademacher variables independent of X_1, \ldots, X_n . Show that for universal constants C, c > 0,

$$c \left\| \sum_{i=1}^{n} \varepsilon_i X_i \right\|_{\psi_2} \le \left\| \sum_{i=1}^{n} X_i \right\|_{\psi_2} \le C \left\| \sum_{i=1}^{n} \varepsilon_i X_i \right\|_{\psi_2}.$$

2. (Vershynin 6.3.4) Let E be a subspace of \mathbb{R}^d of dimension k. Let $X=(X_1,\ldots,X_d)\in\mathbb{R}^d$ have independent σ^2 -subgaussian coordinates satisfying $\mathbb{E}X_i=0$ and $\mathrm{Var}\,X_i=1$, and let $\mathrm{dist}(X,E)$ be the Euclidean distance from X to E. Show that $\mathbb{E}\,\mathrm{dist}(X,E)^2=d-k$, and for universal constants C,c>0,

$$\mathbb{P}\Big[\left|d(X,E) - \sqrt{d-k}\right| > t\Big] \le Ce^{-ct^2/\sigma^4} \text{ for all } t \ge 0.$$

3. (Vershynin 6.2.6) A random vector $X \in \mathbb{R}^d$ is σ^2 -subgaussian if $v^\top X$ is σ^2 -subgaussian for every (deterministic) unit vector $v \in \mathbb{R}^d$.

Let $X \in \mathbb{R}^d$ be σ^2 -subgaussian with $\mathbb{E}X = 0$, and let $G \in \mathbb{R}^d$ have i.i.d. $\mathcal{N}(0,1)$ coordinates. For any $B \in \mathbb{R}^{d' \times d}$ and universal constants C, C', c > 0, show that

$$\mathbb{E}e^{\lambda^2\|BX\|_2^2} \leq \mathbb{E}e^{C\lambda^2\sigma^2\|BG\|_2^2} \leq \mathbb{E}e^{C'\lambda^2\sigma^2\|B\|_F^2} \text{ for all } |\lambda| \leq \frac{c}{\sigma\|B\|_{\text{op}}}.$$

4. (Vershynin 6.2.7) Let X_1, \ldots, X_n be independent σ^2 -subgaussian random vectors in \mathbb{R}^d with $\mathbb{E}X_i = 0$. For any $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ and some universal constants C, c > 0, show that

$$\mathbb{P}\left[\left|\sum_{1\leq i\neq j\leq n} a_{ij} X_i^\top X_j\right| \geq t\right] \leq C \exp\left(-c \min\left(\frac{t^2}{\sigma^4 d\|A\|_F^2}, \frac{t}{\sigma^2 \|A\|_{\text{op}}}\right)\right).$$