S&DS 602: Homework 4

Due Wednesday, September 25 at 2PM, via Gradescope

1. Let X_1, \ldots, X_n be any independent random variables, and let $X_{(1)} \ge X_{(2)} \ge \ldots \ge X_{(n)}$ be their ordered values. Show that for any $1 \le k \le n/2$,

$$\operatorname{Var}[X_{(k)}] \le k \mathbb{E}[(X_{(k)} - X_{(k+1)})^2].$$

2. Let X₁,..., X_n be i.i.d. random points uniformly distributed in the unit square [0, 1]².
(a) Show that for an absolute constant C > 0, E[minⁿ_{i=2} ||X₁ − X_i||²₂] ≤ C/n.

(b) Let $f(X_1, \ldots, X_n)$ be the total length of the shortest path that visits each point exactly once and returns to the starting point. (This is known as the solution to the *traveling salesman problem.*) Show that for an absolute constant C > 0 and any $n \ge 2$,

$$\operatorname{Var} f(X_1, \ldots, X_n) \leq C.$$

3. (van Handel 2.9) Let X_1, \ldots, X_n be i.i.d. standard exponential random variables (having density $e^{-x} \mathbf{1}\{x \ge 0\}$ on the real line) and let $f : \mathbb{R}^n \to \mathbb{R}$ be any bounded function with bounded first partial derivatives. Show the Poincaré inequality

$$\operatorname{Var}[f(X_1,\ldots,X_n)] \le 4\mathbb{E}[\|\nabla f(X_1,\ldots,X_n)\|_2^2]$$

[Hint: Use the identity $\int_0^\infty g(x)e^{-x} dx = g(0) + \int_0^\infty g'(x)e^{-x} dx$.]

4. (PAC-Bayes) (a) Let X be a random variable taking value in any Euclidean space \mathcal{X} , and let $f_{\theta} : \mathcal{X} \to \mathbb{R}$ be a family of uniformly bounded functions indexed by a parameter $\theta \in \Theta$. Define $\psi(\theta) = \log \mathbb{E}[e^{f_{\theta}(X)}]$. For any prior distribution P on Θ and any $x \in \mathcal{X}$, show that

$$\sup_{Q \ll P} \left[\mathbb{E}_{\theta \sim Q} [f_{\theta}(x) - \psi(\theta)] - D_{\mathrm{KL}}(Q \| P) \right] \le \log \mathbb{E}_{\theta \sim P} e^{f_{\theta}(x) - \psi(\theta)}$$

with the supremum taken over all distributions Q on Θ absolutely continuous with respect to P. Show that this implies

$$\mathbb{E}_{X} \sup_{Q \ll P} \left[\exp \left(\mathbb{E}_{\theta \sim Q} [f_{\theta}(X) - \psi(\theta)] - D_{\mathrm{KL}}(Q \| P) \right) \right] \le 1$$

where the outer expectation is over X.

(b) Let X_1, \ldots, X_n be i.i.d. random variables, and let $g_{\theta} : \mathbb{R} \to \mathbb{R}$ be a family of uniformly bounded functions for which $\mathbb{E}g_{\theta}(X_i) = 0$ and $g_{\theta}(X_i)$ is σ^2 -subgaussian for all $\theta \in \Theta$.

Fix any $\lambda > 0$, $\delta \in (0, 1)$, and prior distribution P on Θ . Show that with probability at least $1 - \delta$ over X_1, \ldots, X_n , for any $Q \ll P$,

$$\mathbb{E}_{\theta \sim Q}\left[\frac{1}{n}\sum_{i=1}^{n}g_{\theta}(X_{i})\right] \leq \frac{\lambda\sigma^{2}}{2n} + \frac{1}{\lambda}D_{\mathrm{KL}}(Q||P) + \frac{1}{\lambda}\log\frac{1}{\delta}.$$