S&DS 602: Homework 8

Due Wednesday, October 30 at 2PM, via Gradescope

1. (van Handel 5.10) Let $\psi : [0, \infty) \to [0, \infty)$ be convex with $\psi(0) = \psi'(0) = 0$, and set $\psi^*(x) = \sup_{\lambda>0} \lambda x - \psi(\lambda)$. Suppose $\{X_t\}_{t\in T}$ is a separable, mean-zero process with

$$\log \mathbb{E}[e^{\lambda(X_t - X_s)/d(t,s)}] \le \psi(\lambda) \text{ for all } t, s \in T \text{ and } \lambda \ge 0.$$

Apply the chaining argument to show, for a universal constant C > 0,

$$\mathbb{E}\sup_{t\in T} X_t \le C \int_0^\infty \psi^{*-1}(2\log N(T, d, \varepsilon))d\varepsilon.$$

2. (van Handel 5.11) Recall the setting of Homework 7, Problem 3: Let \mathcal{F} be the class of functions $f:[0,1]^d \to [0,1]$ satisfying the Lipschitz condition $|f(x) - f(y)| \leq ||x - y||_2$. Let X_1, \ldots, X_n be i.i.d. random vectors in $[0,1]^d$, and consider

$$W = \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f(X_i) - \mathbb{E}f(X_i).$$

(a) Show that for any $d \ge 2$ and a constant C > 0 depending only on d,

$$\mathbb{E}W \le C \cdot \begin{cases} n^{-1/2} \log n & \text{if } d = 2\\ n^{-1/d} & \text{if } d \ge 3. \end{cases}$$

You may use without proof the following extension of the chaining result from lecture: If $\{X_t\}_{t\in T}$ is a separable mean-zero sub-gaussian process with respect to d(t, s), then there is a universal constant C > 0 such that for any $\delta > 0$,

$$\mathbb{E}\sup_{t\in T} X_t \le C \int_{\delta}^{\infty} \sqrt{\log N(T, d, \varepsilon)} d\varepsilon + 2\mathbb{E}\sup_{t,s\in T: d(t,s)\le \delta} |X_t - X_s|.$$

(b) Suppose that the law of X_i has bounded density on $[0,1]^d$. Show that for some c > 0 and all $x \in [0,1]^d$,

$$\mathbb{E}\min_{i=1}^{n} \|x - X_i\|_2 \ge cn^{-1/d},$$

and hence $\mathbb{E}W \ge cn^{-1/d}$.

3. (a) Let $\{X_n\}_{n\geq 1}$ be $\mathcal{N}(0,1)$ random variables (not necessarily independent), and $\{a_n\}_{n\geq 1}$ a sequence of positive numbers. Show that if $a_n > c\sqrt{\log n}$ for some c > 0 and all $n \geq 1$, then

$$\mathbb{E}\sup_{n\geq 1}\frac{X_n}{a_n}<\infty.$$

(b) Suppose, in addition, $\{X_n\}_{n\geq 1}$ are independent. Show that conversely, if $a_n/\sqrt{\log n} \to 0$ as $n \to \infty$, then $\sup_{n\geq 1} X_n/a_n = \infty$ with probability 1.

4. (Vershynin 8.1.12) Let e_1, \ldots, e_n denote the standard basis vectors in \mathbb{R}^n , and consider the set

$$T = \left\{ \frac{e_k}{\sqrt{1 + \log k}} : k = 1, \dots, n \right\}.$$

Let $g \sim \mathcal{N}(0, I)$ be a standard Gaussian vector in \mathbb{R}^n . Show that for a universal constant C > 0,

$$\mathbb{E} \sup_{t \in T} g^{\top} t \le C.$$

However, as $n \to \infty$,

$$\int_0^\infty \sqrt{\log N(T, \|\cdot\|_2, \varepsilon)} \, d\varepsilon \to \infty.$$

(Thus a direct application of Dudley's integral upper bound is not tight for large n.)