S&DS 602: Homework 9

Due Wednesday, November 6 at 2PM, via Gradescope

1. (a) Let \mathcal{F} be the class of indicators of all half-spaces on \mathbb{R}^d , i.e. functions

$$f(x) = \mathbf{1}\{x^{\top}t \ge c\}$$
 for some $t \in \mathbb{R}^d, c \in \mathbb{R}$.

Show that $vc(\mathcal{F}) = d + 1$.

[Hint: Show that $0, e_1, \ldots, e_d$ is shattered by \mathcal{F} , where $e_i \in \mathbb{R}^d$ is the *i*th standard basis vector. Conversely, for any $x_1, \ldots, x_{d+2} \in \mathbb{R}^d$, there exist a_1, \ldots, a_{d+2} not all 0 such that $a_1x_1 + \ldots + a_{d+2}x_{d+2} = 0$ and $a_1 + \ldots + a_{d+2} = 0$. Use this to show that x_1, \ldots, x_{d+2} is not shattered by \mathcal{F} .]

(b) Let \mathcal{F} be the class of indicators of all polygons on \mathbb{R}^2 . Show that $vc(\mathcal{F}) = \infty$. [Hint: Consider any set of points on the unit circle.]

2. Show that if \mathcal{F} is any class of functions $f : \mathcal{X} \to \{0, 1\}$ for which $vc(\mathcal{F}) = \infty$, then for any $c \in (0, 1/2)$ and $n \ge 1$, there exists a probability distribution P on \mathcal{X} such that

$$\mathbb{E}_{X_1,\dots,X_n \stackrel{iid}{\sim} P} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}f(X_i) > c.$$

3. (Contraction principle) (a) Let $T \subset \mathbb{R}^2$ be bounded, and let $\varphi : \mathbb{R} \to \mathbb{R}$ be 1-Lipschitz. Show that

$$\sup_{t \in T} (t_1 + \varphi(t_2)) + \sup_{t \in T} (t_1 - \varphi(t_2)) \le \sup_{t \in T} (t_1 + t_2) + \sup_{t \in T} (t_1 - t_2)$$

(b) Let $\varphi_1, \ldots, \varphi_n : \mathbb{R} \to \mathbb{R}$ be 1-Lipschitz, and let $\varepsilon_1, \ldots, \varepsilon_n$ be i.i.d. Rademacher random variables. For any bounded $T \subset \mathbb{R}^n$, show that

$$\mathbb{E}\sup_{t\in T}\sum_{i=1}^{n}\varepsilon_{i}\varphi_{i}(t_{i})\leq\mathbb{E}\sup_{t\in T}\sum_{i=1}^{n}\varepsilon_{i}t_{i}.$$

[Hint: Apply (a) conditional on all but one ε_i .]

(c) Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be i.i.d., where $X_i \in \mathcal{X}$ and $Y_i \in \{0, 1\}$. Let \mathcal{F} be a class of functions $f : \mathcal{X} \to \{0, 1\}$. Using Rademacher symmetrization and (b), show that

$$\mathbb{E}\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}\left(\mathbf{1}\{f(X_{i})\neq Y_{i}\}-\mathbb{P}[f(X_{i})\neq Y_{i}]\right)\leq 2\mathbb{E}\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}\varepsilon_{i}f(X_{i}).$$

4. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be i.i.d., where $X_i, Y_i \in [0, 1]$. Let

$$\mathcal{F} = \{ f : [0,1] \to [0,1], f \text{ is } 1\text{-Lipschitz} \}.$$

Define

$$R(f) = \mathbb{E}[(f(X_i) - Y_i)^2], \qquad R_n(f) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2,$$
$$f_* = \arg\min_{f \in \mathcal{F}} R(f), \qquad \hat{f} = \arg\min_{f \in \mathcal{F}} R_n(f).$$

(You may assume these minimizers are unique, the latter with probability 1.) Show that for a universal constant C > 0, $\mathbb{E}[R(\hat{f})] \leq R(f_*) + C/\sqrt{n}$.

[Hint: Show that $X_f := R_n(f) - R(f)$ is subgaussian with respect to $d(f,g) = \frac{C ||f-g||_{\infty}}{\sqrt{n}}$, and apply Dudley's inequality to bound $\mathbb{E} \sup_{f \in \mathcal{F}} |R_n(f) - R(f)|$.]