S&DS 602: Homework 12

Due Wednesday, December 4 at 2PM, via Gradescope

1. (Vershynin 7.6.9) Let $g \sim \mathcal{N}(0, I)$ be a standard Gaussian vector in \mathbb{R}^n , and $T \subset \mathbb{R}^n$ a bounded set. Define

$$w(T) = \mathbb{E} \sup_{t \in T} g^{\mathsf{T}} t, \qquad \tilde{w}(T) = \mathbb{E} \sup_{t \in T} |g^{\mathsf{T}} t|.$$

Show that for universal constants C, c > 0 and any point in $t_0 \in T$,

$$c[w(T) + ||t_0||_2] \le \tilde{w}(T) \le C[w(T) + ||t_0||_2].$$

In particular, if T contains 0, then w(T) and $\tilde{w}(T)$ are equivalent up to constant factors. [Hint: Recall the relations from lecture $\sup_{s,t\in T} |g^{\top}(t-s)| = \sup_{s,t\in T} g^{\top}(t-s) = 2w(T)$.]

2. (Vershynin 8.7.2) Let $A \in \mathbb{R}^{n \times m}$ be a random matrix with $\mathcal{N}(0, 1)$ entries. Let $S \subset \mathbb{R}^n$ and $T \subset \mathbb{R}^m$ be bounded sets. Show that the reverse of Chevet's inequality holds: For a universal constant c > 0,

$$\mathbb{E} \sup_{u \in S, v \in T} u^{\top} Av \ge c \Big[w(T) \operatorname{rad}(S) + w(S) \operatorname{rad}(T) \Big].$$

- 3. (Vershynin 11.3.2) Let $V \subset \mathbb{R}^n$ be a closed bounded set, $\operatorname{conv}(V)$ its convex hull, and B^n and S^{n-1} the Euclidean unit ball and unit sphere in \mathbb{R}^n , respectively.
 - (a) Show that $conv(V) = B^n$ if and only if

$$\sup_{x \in V} x^{\top} y = \|y\|_2 \text{ for all } y \in S^{n-1}.$$

(b) Let $r_{-}, r_{+} \geq 0$. Show that $r_{-}B^{n} \subseteq \operatorname{conv}(V) \subseteq r_{+}B^{n}$ if and only if

$$r_{-} \|y\|_{2} \le \sup_{x \in V} x^{\top} y \le r_{+} \|y\|_{2}$$
 for all $y \in S^{n-1}$

4. (Vershynin 11.3.7) Let $g_1, \ldots, g_m \sim \mathcal{N}(0, I)$ be i.i.d. random Gaussian vectors in \mathbb{R}^n . Applying the Dvoretzky-Milman Theorem, show that if $m \geq \exp(Cn)$ for a large enough absolute constant C > 0, then the convex hull of $\{g_1, \ldots, g_m\}$ is approximately a Euclidean ball of radius $\sim \sqrt{2 \log m}$.