The Non-Backtracking Matrix

Q1: Recall that for the stochastic block model $G(n, \frac{\eta}{n}, \frac{\zeta}{n})$ and fixed $\alpha > \beta$, the "signal eigenvalue" $\frac{\alpha - \beta}{2}$ is lost in the bulk of the spectrum as $n \to \infty$.

(Note: Any fixed vertex has Binom($n-1, \frac{\alpha}{n}$) + Binom($n-1, \frac{\beta}{n}$) \sim Poisson(d) neighbors, where $d = \frac{\alpha + \beta}{2}$. Each neighbor has conditionally \sim Pois(d) new neighbors, etc. Thus $G(n, \frac{\eta}{n}, \frac{\zeta}{n})$ has the same local weak limit, and the same limit ESD for its adjacency matrix as Erdős-Rényi $G(n, \frac{\zeta}{n})$. This limit ESD has unbounded support.)

Is there a spectral method that can identify the communities?

Q2: Recall that the random d-regular graph has limit ESD for its adjacency matrix given by the Kesten-McKay law. This is a density supported on $[-2\sqrt{d}, 2\sqrt{d}]$. For $d > 3,$ the largest eigenvalue λ_1 does not converge to this support. Let $X = (1, \ldots, 1)$. Then

$$AX = \lambda X$$

A is the graph is d-regular. So λ_1 is always an eigenvalue of A.

A d-regular graph is called Ramanujan if

$$\lambda^2 \leq 2\sqrt{d-1} \quad \text{and} \quad \lambda_n \geq -2\sqrt{d-1}.$$

Is it true that for a random d-regular graph, $\lambda_2 \to 2\sqrt{d-1}$ and
Definition: The non-backtracking matrix B_{uv} of a graph $G = (V, E)$ is the matrix indexed by directed edges $u \rightarrow v$.

$$B_{uv} = \begin{cases} 1 & \text{if } u \rightarrow v \in E \setminus E' \\ 0 & \text{otherwise} \end{cases}$$

Note that B is not symmetric: $B_{uv} \neq B_{vu}$. The eigenvalues λ are complex-valued.

Then (Bordenave, Lelarge, Massoulié '18): Assume $d > 1$.

(a) For Erdős-Rényi $G(n, d/n)$, the non-backtracking matrix B has one eigenvalue converging to 0, and remaining eigenvalues in the disk $|\lambda| < 1$; why? For any fixed $\epsilon > 0$ and large n.

(b) For the SBM $G(n, d/n)$ if $d < \frac{\lambda}{2}$ where $\lambda = \frac{\epsilon}{2}$, then B has two eigenvalues converging to 1 and λ, respectively, and remaining eigenvalues in the above disk, why? For large n.

If G has a vertex v of high degree, $v \rightarrow A^k v$ may be dominated by paths alternating between v and its neighbors. The number of such paths is $(\deg(v))^k$ for any k.

Hence, non-backtracking graphs cannot do this, and must visit many distinct vertices unless G has short cycles.

If G is a tree, there is at most one non-backtracking path from v to v', which is the shortest path. For locally tree-like graphs, the corresponding eigenvector ξ is such that $\xi \in \mathbb{R}^m$ defined by

$$\xi_v = \begin{cases} 1 & \text{if } v \text{ is the root} \\ 0 & \text{otherwise} \end{cases}$$
Remark: For two communities of equal size, the threshold $\frac{\alpha}{\kappa^2} > \frac{1}{2}$ is the optimal one for detection and rank recovery. (Merely Necessary, Sly ’12)

Bordenave et al establish a general version of the preceding theorem for any fixed number k of communities as $n \to \infty$.

Intuition: Let $\mathbf{S}_{uv} = (\alpha \kappa)^{-1} \sum_{i=1}^{\alpha \kappa} \mathbf{O}_{ii}$. (Don’t depend on u)

This is an eigenvector of B with eigenvalue $\frac{\alpha}{\kappa}$.

\[
\mathbf{S}^{(k)}_{uv} = \sum_{i=1}^{k \alpha \kappa} \mathbf{B}^{(k)}_{uv} = (\alpha \kappa)^{-1} \sum_{i=1}^{\alpha \kappa} \sum_{t=1}^{k} \mathbf{O}_{ii} = (\alpha \kappa)^{-1} \sum_{i=1}^{\alpha \kappa} \mathbf{O}_{ii} = \frac{\alpha}{\kappa} \mathbf{S}^{(0)}_{uv}
\]

For $\frac{\alpha}{\kappa} > \frac{1}{2}$ and large k, we can show $\mathbf{S}^{(k)}_{uv} \approx \mathbf{S}^{(0)}_{uv}$. Similarly, $\mathbf{S}^{(k)}_{ii} = (\alpha \kappa)^{-1} \sum_{i=1}^{\alpha \kappa} \mathbf{O}_{ii}$ is an approximate eigenvector of \mathbf{O}, with eigenvalue $\frac{\alpha}{\kappa}$.

If $M_{\mathbf{O}, \mathbf{M}^{-1}}$ is any (non-symmetric) matrix with eigenvalues λ, λ^* and singular values $\sigma_1 > \sigma_2 > \cdots > \sigma_m$, then

\[
\sum_{t=1}^{m} \frac{1}{\sigma_t^2} \leq \frac{\alpha}{\kappa} = \operatorname{Tr} \mathbf{M} \mathbf{M}^T.
\]

Letting λ, λ^* be the eigenvalues of B, for any $k > q$,

\[
\frac{1}{\lambda} \left(\frac{1}{\kappa} \right)^k \left(\frac{1}{\alpha \kappa} \right)^{k^2} \leq \frac{1}{\lambda^*} \left(\frac{1}{\kappa} \right)^k \left(\frac{1}{\alpha \kappa} \right)^{k^2} \leq \frac{1}{\lambda} \operatorname{Tr} B^k \mathbf{B}^k.
\]

We have $\left(\mathbf{B}^k \mathbf{B}^k \right)_{uv} = \sum_{s,t=1}^{k \alpha \kappa} \mathbf{B}^{(k)}_{uv} = \sum_{s,t=1}^{\alpha \kappa} \mathbf{O}_{ss} \mathbf{O}_{tt} = \#(s=t)$ which κ of them from (uv).

On expectation this is $\frac{\alpha^2}{\kappa}$. So for large k and fixed k, we expect

\[
\frac{1}{\alpha \kappa} B^k \mathbf{B}^k \approx \frac{\alpha^2}{\kappa} \mathbf{I} \mathbf{I} = \alpha \kappa \mathbf{I}.
\]

Bordenave, Lelarge, Masek show that all but two entries are in this link.

Theorem (Friedman ’08): Fix $d \geq 2$. A uniformly random d-regular graph has $\lambda \approx 2d^{-1/2}$ and $\lambda \approx 2d^{-1}$. For any fixed $d / 2$, taking λ^* when $\lambda \approx 2d^{-1}$, are the eigenvalues of its adjacency matrix.

The proof uses the spectral method and a Furedi-Komlos-type argument. It is easier to analyze $\operatorname{Tr} B^k$, then to analyze $\operatorname{Tr} A^k$.

Prop (Johannsson Identity): For any graph $G = (V, E)$ with n vertices on (undirected) edges, letting A, D, and B be the adjacency, diagonal degree, and non-backtracking matrices,

\[
\det (I - \lambda \mathbf{B}) = (1 - \lambda)^{n-1} \det (I - \lambda \mathbf{A} + \lambda^2 \mathbf{D} - 2).
\]

Hence: Eigenvalues $\lambda = \frac{\kappa}{\alpha}$ of B are (asymptotically)

\[
\pm 1, -1 \text{ each with multiplicity } m n.
\]

The $2m$ roots of $0 \equiv \det (I - \lambda \mathbf{A} + \lambda^2 \mathbf{D} - 2) \equiv \det (X^2 - A + D - 2)$.

For a regular graph, $D = \mathbf{I}$. Thus

\[
\lambda \text{ is an eigenvalue } \Rightarrow 1 \pm \sqrt{\lambda} \text{ is an eigenvalue } \lambda \text{ of } \mathbf{A}.
\]

If A has an eigenvalue μ with $|\mu| > 2 \sqrt{d}$, then B has two real eigenvalues at $\pm \frac{1}{2} \frac{\mu - 2 \sqrt{d}}{2} = \pm \sqrt{d}$.
In particular, the eigenvalue \(\lambda \) corresponds to \(\{1, d, \ldots, d\} \) for \(B \) and Friedman's Theorem may be restated as:

Then let \(B \) be the non-backtracking matrix of a random \(d \)-regular graph.
Then \(B \) has a single eigenvalue equal to \(d+1 \), and removing eigenvalues in the disc \(\|z\| < 1 \) for any fixed \(\epsilon > 0 \) when \(d \to \infty \).

Proof of Ihara-Bass

Let \(S \in \mathbb{R}^{n \times n} \), \(T \in \mathbb{R}^{n \times n} \) be defined by:

\[
S_{uvw} = \begin{cases} 1 & \text{if } \{u, v, w\} \in E \\ 0 & \text{otherwise} \end{cases} \quad T_{uvw} = \begin{cases} 1 & \text{if } \{u, v, w\} \in E \\ 0 & \text{otherwise} \end{cases}
\]

So \(S^{2n+1} = (S^3) = \sum_{w 	ext{ mediate}} S_{uwv} \), \(S^{n+1} = (S^3T) = \sum_{w \text{ mediate}} S_{uwv} \).

Define the permutation \(\pi \in \mathbb{R}^{n \times n} \) by:

\[
P_{u,v,w} = \begin{cases} 1 & \text{if } u, v, w \end{cases} 0 \text{ otherwise.}
\]

So \(S^{2n+1} = S^{n+1} = S^{2} \) and \(P^2 = I \). We have:

\[
(\pi \pi)_{uvw} = \sum_{z \text{ mediate}} S_{uwv}, \quad (\pi \pi)_{uvw} = \sum_{z \text{ mediate}} S_{uwv}.
\]

So \(\pi \pi = \pi \pi \).

Proof Idea of Friedman's Theorem (Following Bedovran '95)

1. Simplification to configuration model: Link all half-edges to each vertex.

Construct \(G \) by randomly pairing the half-edges. This yields a \(d \)-regular multigraph, possibly with:

- self-loops
- repeated edges between a vertex pair \((u, v) \).

Conditional on \(S \), the distribution \(G \) is uniformly random over all \(d \)-regular graphs.

Prop (Bulldog '01): \(M_{S} \to e^{-\lambda^2/4} \pi_{n \to \infty} \).

If result holds when \(G \) is this multigraph \(G \), then it also holds only conditional on \(S \to \).

2. Path-counting and covering: Recall \(\Xi(k) \) \& \(\Xi_k(k) \).

Here:

\[
\Xi_k(k) = \sum_{x} \text{Be}_x \cdots \text{Be}_x \cdot \text{Be}_k \cdot \text{Be}_k \cdot \text{Be}_k \cdot \text{Be}_k
\]

\[
\Xi(k) = \sum_{x} \text{Be}_x \cdots \text{Be}_x
\]

\[
\Xi(k)_k = \sum \text{Be}_x \cdots \text{Be}_x \cdot \text{Be}_k \cdot \text{Be}_k \cdot \text{Be}_k \cdot \text{Be}_k
\]

\[
\Xi(k) = \# \text{ pairs of non-backtracking paths of half edges}
\]

starting and ending at shared directed edges.
This includes the contribution from $X_i = d/4$ which corresponds to the left
left and right) eigenvalue $X: (-1, 0) \in \mathbb{R}^d$; \(B_i = \{X: \mathbb{R}^d \}, \ X_i = \{X: \mathbb{R}^d \} \).

To remove this contribution, we center B_i:

- Index both the half-edges and directed edges of G by $\text{idx}(i)$: $\{X_{i1}, X_{i2}, X_{i3}, \ldots, X_{id}\}$

Then $B_{i}(\text{idx}(i)) = \{X: \text{idx}(i) \}$ if X is joined with (X, k) for some k.

\[
\sum_{k \in \mathbb{Z}} M_{X}(X, k) \text{ when } M_{X}(X, k) \text{ is an edge between X and (X, k)}.
\]

(We take this as the definition of B_i when G has repeated edges and loops.)

Define $M_{X}(X, k) = M_{X}(X, k) - \frac{1}{d}$ as the centered version of M_{X}.

- If we set $B_{i}(\text{idx}(i)) = \sum_{k \in \mathbb{Z}} M_{X}(X, k) = B_{X} - \frac{1}{d}$, then for every vertex X in the ball $B_{i}(X)$ of radius i.

Prop: If $\epsilon = \lambda(G) \geq \epsilon \log(d-1)$, then $\text{IP}[G] = \epsilon$-tangle-free \Rightarrow.

Proof sketch: Fix v. Pair the d half-edges at v one at a time, then the last one. $d-1$ half-edges of each neighbor at a time, etc., until we've paired all half-edges from level $d-1$. The number of times we do a pairing is at most $1/\epsilon^2$, which is at most $T = \sum_{k \in \mathbb{Z}} d(\epsilon-1)^k \leq 3(d-1)^k$.

Each pairing, we create a new cycle with probability at most
\[
\text{IP}[G] \leq \frac{1/\epsilon^2}{d(\epsilon-1)^k} \leq 0.99 \frac{n}{1/d}.
\]

So the number of cycles is $\leq \text{Bin}(T, (\epsilon-1)^k)$.

Then $\text{IP}[\epsilon \geq \epsilon \log(d-1)] \geq \epsilon \log(d-1) - \epsilon \log d$, taking a union

1. In the Furedi-Kalai argument, we used Markov's inequality and bounded $\text{IP}[W^{(k)}]$. Recall we needed to take $\epsilon = \lambda(G) \geq \epsilon \log(d-1)$, which $\lambda(G)$.

2. For a constant γ, we prob. at least $\gamma \omega_i$ G contains a clique of $d+1$ vertices.

Then on this event, this is a contribution of at least

\[
\sum_{k \in \mathbb{Z}} (d-1)^k \leq 3(d-1)^k.
\]
Refined argument: Let $k = \log n$, $m = \left\lfloor \frac{n}{2^k} \right\rfloor$, $k \leq \log n$.

To bound λ^{2k}, write $\lambda^{2k} = \|B^{(k)}\|_2^2$.

Note that

$$B^{(k)(u_2 \cdots u_{2k})} = \sum_{t} M_{u_2 \cdots u_{2k}}^t \cdots M_{u_{2k} \cdots u_{2k}}^t$$

where the sum is over all $(2k)$-tuples of half-edges $(y_k = (u_i, v_i) : i = 1, 2k)$ such that

- $u_2 \neq v_2, u_3 \neq v_3, \ldots, u_{2k} \neq v_{2k}$
- $\delta_{2k} = (u_2, v_2)$ and $\delta_{2k} = (u_2, v_2)$.

Let G be the subgraph containing edges $(u_2, v_2), (u_3, v_3), \ldots, (u_{2k}, v_{2k})$.

Let $B^{(k)} = \sum_{\delta} M_{\delta}$ be his $(2k)$ cycle.

Lemma: There exists $x^{(k)} \neq 0$ such that

- If $x^{(k)} = 0$ and G is $2k$-regular, then $B^{(k)} x^{(k)} = B x^{(k)} = B^{(k)} x^{(k)} = x^{(k)}$, and
- $\|x^{(k)}\|_2 \leq \frac{1}{\sqrt{n}} (\log n)^{2k} (k!)^{k}$

For $\delta = (\alpha \beta)$ and c small enough, this remainder is negligible. Then

$$\lambda^{2k} = \lambda^{2k-2} \leq \|B^{(k)}\|_2^2 \leq \|B^{(k)}\|_2 \|B^{(k)}\|_2 \leq \|B^{(k)}\|_2 \|B^{(k)}\|_2 ^{\frac{1}{2}} = \frac{1}{2} \|B^{(k)}\|_2 ^{\frac{1}{2}} \|B^{(k)}\|_2 ^{\frac{1}{2}}$$

$$\leq \frac{1}{2} \left(\sum_{\delta} \|M_{\delta}\|_2^2 \right)^{\frac{1}{2}} \left(\sum_{\delta} \|M_{\delta}\|_2^2 \right)^{\frac{1}{2}}$$

This is a sum over $2k$ non-backtracking paths δ, each starting with the second edge of the previous path and each traversing a graph with ≤ 1 cycle.

Counting canonical paths: Call $(y^{(1)}, y^{(2)}, y^{(3)})$ to this sum canonical.

Note: Without the assumption that each $G^{(k)}$ has ≥ 1 cycle, a naive bound for λ is C_{2k}, which is much larger.

Proof sketch: Call a step (u, v) of $y^{(k)}$. A k-step of $y^{(k)}$ is a previously unvisited vertex (for any previous step $y^{(1)}, y^{(2)}, \ldots$).

The set of edges δ_{2k} for such steps form a spanning tree of the visited graph.

If $y^{(k)}$ has ≥ 1 cycle, it is specified (since it is non-backtracking) by:

- All jump steps not belonging to this tree.
- The directed edge corresponding to each jump, immediately after each jump, and corresponding to the next step not on the already-traversed tree (which may be another jump or a first step).
- The first step not on the already-traversed tree, and its directed edge.

The total number of non-back edges is $c + 1 + x$. Each is traversed at most once by $y^{(k)}$, because $y^{(k)}$ doesn't cycle. Thus, the number of jumps is at most $c + 1 + x$ and the number of specific transitions is $\leq (C_{2k})^C_1 (x+1+1)$.
If \(y(t) \) has one cycle, it is still specified by the above, but the number of jumps may be too large (O(k)).

\[
\sum_{i=0}^{\infty} (\text{loops } 000) \text{ times}
\]

However, let \(u \) be the last jump before \(y(t) \) begins to cycle, and let \(t \) be the number of steps from \(u \) until \(y(t) \) leaves the cycle.

The cycle is unique, so \(y(t) \) is still specified by discarding the info. For all jumps steps between \(u \) and \(v \), \(y(t) \) leaves the cycle.

The number of non-discarded jump steps is still at most \(n + \frac{1}{2} \), and \(t \leq n^2 + n^3 \). Thus, the number of specifications is still

\[
\leq (Cm)^{2(n + \frac{1}{2})^{n^2 + n^3}}
\]

Multiplying this bound for \(j = 1, \ldots, m \) concludes the proof.

From this lemma and a bound on \(I E \left[\frac{1}{n} \sum_{i=1}^{n} M_{i+1}^{(1)} M_{i+1}^{(2)} \right] \), we get

\[
I E \left[\left(\mathbf{R}^{(1)} \mathbf{R}^{(2)} \right)^{m} \right] \leq \left(\frac{2n}{k^2} \right)^{2} m = C(6) \left(\frac{1}{k^2} \right)^{2}.
\]

Then

\[
I P \left[\max \left(\mathbb{A}_{n}, \mathbb{D}_{n} \right) > \sqrt{k} \right]
\]

\[
= I P \left[G \text{ and } \mathbf{k} - \text{tangle-free} \right] + I P \left[\max \left(\mathbb{A}_{n}, \mathbb{D}_{n} \right) > \sqrt{k} \right]
\]

\[
= I P \left[G \text{ and } \mathbf{k} - \text{tangle-free} \right] + I P \left[\max \left(\mathbb{A}_{n}, \mathbb{D}_{n} \right) > \sqrt{k} \right]
\]

\[
\leq I P \left[G \text{ and } \mathbf{k} - \text{tangle-free} \right] + I P \left[\max \left(\mathbb{A}_{n}, \mathbb{D}_{n} \right) > \sqrt{k} \right]
\]

\[
\leq I P \left[G \text{ and } \mathbf{k} - \text{tangle-free} \right] + I P \left[\left(\mathbf{R}^{(1)} \mathbf{R}^{(2)} \right)^{m} > \left(\frac{2n}{k^2} \right)^{2} \right]
\]

\[
\leq \left(\frac{2n}{k^2} \right)^{2} I E \left[\left(\mathbf{R}^{(1)} \mathbf{R}^{(2)} \right)^{m} \right]
\]

\[
\rightarrow 0, \quad \text{choosing } m = C(6) \left(\frac{1}{k^2} \right)^{2}.
\]