1. An urn contains 600 red balls and 400 black balls. A random sample of size 50 is taken without replacement. Let \(X \) denote the number of red balls in the sample. Show that the probability mass function of \(X \) is unimodal.

2. Hidden inside each box of Primate brand breakfast cereal is a small plastic figure of an animal: an ape, a baboon, or a chimp. Suppose a fraction \(\alpha \) of the very large population of cereal boxes contain apes, a fraction \(\beta \) contain baboons, and a fraction \(\gamma \) contain chimps. Find the expected number of boxes you need to buy before you have at least one figure of each type.

3. Let \(\{y_{ij} : i = 1, \ldots, r, j = 1, \ldots, c\} \) be a set of observations with the unusual property that \(y_{ij} = 1 \) if \(i = j = 1 \) and 0 otherwise. Suppose we fit an additive model to the data, by finding values \(\hat{t}, \hat{a}_i, \hat{b}_j \) to minimize \(\sum_{ij} (y_{ij} - t - a_i - b_j)^2 \).

 (a) Find the values of \(\hat{t}, \) the \(\hat{a}_i \)'s and the \(\hat{b}_j \)'s if they are subjected to the “sum constraints” \(\sum_i \hat{a}_i = 0 = \sum_j \hat{b}_j \).

 (b) Find the values of \(\hat{t}, \) the \(\hat{a}_i \)'s and the \(\hat{b}_j \)'s if they are subjected to the “treatment constraints” \(\hat{a}_1 = 0 = \hat{b}_1 \).

4. Three random points are chosen independently from the uniform distribution on a disc of unit radius. Find the probability that the center of the disc lies in the convex hull of the three points.

5. Suppose \(X_0, X_1, \ldots, X_n \) is a Markov chain on a finite state space, with transition matrix \(P \) and initial distribution \(\mu \). Define \(Y_i = X_{n-i} \) for \(i = 0, 1, \ldots, n \).

 (a) Show that \(\{Y_i : i = 0, 1, \ldots, n\} \) is also a Markov chain, with transition probabilities that might not be stationary.

 (b) If \(\mu \) is the stationary distribution for \(P \), show that the \(Y \)-chain also has stationary transition probabilities.

6. Consider the choice of a set estimator \(C_X \) for a parameter \(\theta \in \mathbb{R} \) based on one observation \(X \) from the \(N(\theta, 1) \) distribution, using the loss function

\[
L(\theta, C) = (\text{Lebesgue measure of } C) - 1\{\theta \in C\}
\]

Show that the set \(C_X = [X - c_0, X + c_0] \) is minimax for a suitably chosen constant \(c_0 \).
7. Suppose T is an unobserved random variable with density $g(t) = \frac{1}{2} t^2 e^{-t} \{t > 0\}$, which is generated independently of a random variable B for which $\mathbb{P}\{B = +1\} = 1/2 = \mathbb{P}\{B = -1\}$. We observe B and $X = \theta + BT$ for an unknown $\theta \in \mathbb{R}$.

(a) Find the Fisher information function for a single observation (X, B).

(b) Suppose we only observe X and not B. Show that the Fisher information is the same as for part (a).

(c) If (X, B) were observed, would X be a sufficient statistic for θ?

8. Let \mathbb{P}_θ denote the uniform distribution on $[0, \theta]^2$, for $\theta > 0$. That is, the coordinates x_1 and x_2 are independent Uniform$[0, \theta]$ under \mathbb{P}_θ. Let $S := x_1 + x_2$ and $M := \max(x_1, x_2)$. Consider estimation of θ with loss function $L(\theta, a) := (\theta - a)^2$.

(a) Explain why $E_{\theta}(S \mid M = m)$ is preferred to S for estimating θ.

(b) Explain why $E_{\theta}(2x_1 \mid S)$ is preferred to $2x_1$ for estimating θ.

(c) Explain why $E_{\theta}(3M/2 \mid S = s)$ is not preferred to $3M/2$ for estimating θ.

9. Suppose X_n has a Bin(n, p_n) distribution with variance $\sigma_n^2 = np_n(1 - p_n)$ that converges to 1 as n tends to infinity. Show that $(X_n - np_n)/\sigma_n$ cannot converge in distribution to $\mathcal{N}(0, 1)$.

10. Suppose Z_1, \ldots, Z_k are independent random vectors, each distributed $\mathcal{N}(0, I_n)$. Let u_0 be a fixed unit vector in \mathbb{R}^n. Show that the squared length of the component of u_0 in the subspace spanned by Z_1, \ldots, Z_k is distributed like $A/(A + B)$ where A and B are independent with $A \sim \chi^2_k$ and $B \sim \chi^2_{n-k}$.

11. Let P and Q be probability measures on a set \mathcal{X} and f be a measurable function from a set \mathcal{X} into another set \mathcal{Y}. Write \tilde{P} for the distribution of f under P and \tilde{Q} for its distribution under Q. [You may assume \mathcal{X} and \mathcal{Y} are finite if you wish to avoid measure theoretic details.]

(a) Show that the relative entropy $D(\tilde{P} \mid \mid \tilde{Q})$ is less than or equal to $D(P \mid \mid Q)$.

(b) Let \tilde{P} denote the Bin(n, p) distribution and \tilde{Q} denote the Poisson(np) distribution. Show that $D(\tilde{P} \mid \mid \tilde{Q}) = O(np^2)$.

12. Suppose an urn initially contains r red balls and b black balls. At step n a ball is selected at random from the urn, then replaced by d_n balls of the same color, where d_n is a positive random integer that might depend on the outcomes of the first $n-1$ draws. After completion of the nth step, let R_n denote the number of red balls and B_n the number of black balls in the urn. Show that $X_n := R_n/(R_n + B_n)$ is a martingale with respect to a suitable filtration.