Assignment 4 Solutions – M. Lacey, 02/18/02

Chapter 8, Problem 5 (part (c))
The asymptotic variance of the maximum likelihood estimate \(\hat{p} \) is \(\frac{1}{n I(p)} \), where
\[
I(p) = E \left[\frac{\partial}{\partial p} \log f(X|p) \right]^2 - E \left[\frac{\partial^2}{\partial p^2} \log f(X|p) \right].
\]
From part (b), we know that the mle \(\hat{p} = \frac{1}{X} \). Calculations for \(I(p) \):
\[
\begin{align*}
f(X|p) &= p(1-p)^{x-1} \\
\log f(X|p) &= \log p + (x-1)\log(1-p) \\
\frac{\partial}{\partial p}\log f(X|p) &= \frac{1}{p} - \frac{x-1}{1-p} \\
\frac{\partial^2}{\partial p^2}\log f(X|p) &= -\frac{1}{p^2} - \frac{x-1}{(1-p)^2}
\end{align*}
\]
Since \(E(X) = \frac{1}{p} \), it follows that \(I(p) = \frac{1}{p^2(1-p)} \), and thus the asymptotic variance of the mle is \(\frac{p^2(1-p)}{n} \).

Chapter 8, Problem 8
Using the normal approximation for the Poisson distribution, the approximate sampling distribution of \(\hat{\lambda} \) is \(N \left(\lambda_o, \frac{\lambda_o}{n} \right) \). From Example A, we’ve given that \(\hat{\lambda} = 24.9 \) and \(n = 23 \), and using the estimate \(s_\hat{\lambda} \) the resulting approximate distribution is \(N(24.9, 1.08) \). For any value \(\delta \),
\[
P(|\lambda_o - \hat{\lambda}| > \delta) \approx P \left(\frac{|Z| > \frac{\delta}{\sqrt{1.08}}}{\sqrt{1.08}} \right) = 2 \left(1 - P \left(Z \leq \frac{\delta}{\sqrt{1.08}} \right) \right).
\]
\[
\begin{align*}
\delta = 0.5 : & \quad P \left(|Z| > \frac{0.5}{\sqrt{1.08}} \right) = 0.6307 \\
\delta = 1.0 : & \quad P \left(|Z| > \frac{1.0}{\sqrt{1.08}} \right) = 0.3363 \\
\delta = 1.5 : & \quad P \left(|Z| > \frac{1.5}{\sqrt{1.08}} \right) = 0.1492 \\
\delta = 2.0 : & \quad P \left(|Z| > \frac{2.0}{\sqrt{1.08}} \right) = 0.0545 \\
\delta = 2.5 : & \quad P \left(|Z| > \frac{2.5}{\sqrt{1.08}} \right) = 0.0162
\end{align*}
\]

Chapter 8, Problem 11
In Example D of Section 8.4, \(f(x|\alpha) = \frac{1+\alpha x}{2}, -1 \leq x \leq 1 \) and \(-1 \leq \alpha \leq 1 \). The method of moments estimate \(\hat{\alpha} = 3X \).
(a) \(E(\hat{\alpha}) = E(3X) = 3E(X) = \frac{4}{3} \) (this can be easily verified by computing the expectation of \(X \), \(E(\hat{\alpha}) = 3\left(\frac{4}{9}\right) = \alpha \), and thus the estimate is unbiased.
(b) \(Var(\hat{\alpha}) = Var(3X) = 9Var(X) = 9\left(\frac{\alpha^2}{n}\right) \). We compute \(\sigma^2 = E(X^2) - (E(X))^2 = \frac{1}{3} - \left(\frac{4}{9}\right)^2 \), and it follows that \(Var(\hat{\alpha}) = \frac{3\alpha^2}{n} \).
(c) By the Central Limit Theorem, \(\hat{\alpha} \sim N \left(\alpha, \frac{3\alpha^2}{n} \right) \). For \(n = 25 \) and \(\alpha = 0 \), \(\hat{\alpha} \sim N(0, 3/25) \), and thus \(P(|\hat{\alpha}| > 0.5) \approx P \left(\frac{|Z| > \frac{0.5}{\sqrt{3/25}}}{\sqrt{3/25}} \right) = 2(1 - P(Z \leq 1.44)) = 0.15. \)
Chapter 8, Problem 14 (part (c))
For an i.i.d. sample of random variables with density function \(f(x|\sigma) = \frac{1}{\sigma} \exp \left(-\frac{|x|}{\sigma} \right) \), we know from part (b) that the mle \(\hat{\sigma} = \frac{1}{n} \sum |x_i| \). To find the asymptotic variance of \(\hat{\sigma} \), we need to calculate \(I(\sigma) = E \left[\frac{\partial}{\partial \sigma} \log f(X|\sigma) \right]^2 = -E \left[\frac{\partial^2}{\partial \sigma^2} \log f(X|\sigma) \right] \):

\[
\log f(X|\sigma) = -\log(2\sigma) - \frac{|x|}{\sigma}
\]
\[
\frac{\partial}{\partial \sigma} \log f(X|\sigma) = -\frac{1}{\sigma} + \frac{|x|}{\sigma^2}
\]
\[
\frac{\partial^2}{\partial \sigma^2} \log f(X|\sigma) = \frac{1}{\sigma^2} - \frac{2|x|}{\sigma^3}
\]
\[
-E \left[\frac{\partial^2}{\partial \sigma^2} \log f(X|\sigma) \right] = E \left(\frac{2|x|}{\sigma^3} - \frac{1}{\sigma^2} \right)
\]

\(E(|x|) = \sigma \), so \(I(\sigma) = \frac{\sigma}{\sigma^2} \), and the asymptotic variance \(\frac{1}{nI(\sigma)} = \frac{\sigma^2}{n} \).

Chapter 8, Problem 25
Electronic components have lifetimes that are exponentially distributed with density function \(f(t|\tau) = (1/\tau) \exp(-t/\tau), t \geq 0 \). Of five new components which are tested, one fails after 100 days.
(a) Let \(T \) be the time of the first failure. The distribution of \(T \) is exponential with parameter \(\frac{n}{\tau} = \frac{5}{\tau} \) for \(n = 5 \), so \(f(t|\tau) = \frac{5}{\tau} \exp \left(-\frac{5t}{\tau} \right) \).
(b) To find the mle, compute \(\frac{\partial}{\partial \tau} \log f(t|\tau) = \frac{\partial}{\partial \tau} \left(\log(5) - \log(\tau) - \frac{5t}{\tau} \right) = - \frac{1}{\tau} + \frac{5t}{\tau^2} \Rightarrow \hat{\tau} = 5T \).
(c) To calculate the sampling distribution of the mle \(\hat{\tau} \), note that \(P(\hat{\tau} \leq t) = P(5T \leq t) = P(T \leq t/5) = 1 - \exp \left(-\left(\frac{5}{\tau} \right) \left(\frac{t}{\tau} \right) \right) = 1 - \exp(-t/\tau) \), and thus \(f(\hat{\tau}) = (1/\tau) \exp(-t/\tau) \Rightarrow \hat{\tau} \sim \exp(1/\tau) \).
(d) For an exponential random variable \(X \) with parameter \(\lambda \), \(\text{Var}(X) = 1/\lambda^2 \). Since \(\hat{\tau} \sim \exp(1/\tau) \), \(\text{SE}(\hat{\tau}) = \sqrt{\tau^2} = \tau \).

Chapter 8, Problem 44
\(X_1, \ldots, X_n \) are i.i.d random variables with density function \(f(x|\theta) = (\theta + 1)x^\theta, 0 \leq x \leq 1 \).
(a) To find the MOME, calculate \(E(X) = \int_0^1 (\theta + 1)x^{\theta + 1}dx = \frac{\theta + 2}{\theta + 2} = \bar{X} \Rightarrow \hat{\theta} = 2\frac{n-1}{n} \).
(b) The likelihood function \(f(x_1, \ldots, x_n|\theta) = (\theta + 1)^n (\prod x_i)^\theta \), the log-likelihood \(\log f(x_1, \ldots, x_n|\theta) = n\log(\theta + 1) + \theta \log(\prod x_i) = n\log(\theta + 1) + \theta \sum \log(x_i) \), and \(\frac{\partial}{\partial \theta} \log f(x_1, \ldots, x_n|\theta) = \frac{n}{\theta + 1} + \sum \log(x_i) \). It follows that the mle \(\theta = -\sum \frac{n}{\log(x_i)} - 1 \).
(c) The second derivative of the log-likelihood \(\frac{\partial^2}{\partial \theta^2} \log f(x|\theta) = \frac{\partial}{\partial \theta} \left(\frac{n}{\theta + 1} + \log(x) \right) = -\frac{1}{(\theta + 1)^2} \), and thus \(I(\theta) = -E \frac{\partial^2}{\partial \theta^2} \log f(x|\theta) = \frac{1}{(\theta + 1)^2} \). The asymptotic variance of the mle is given by \(\frac{1}{nI(\theta)} = \frac{(\theta + 1)^2}{n} \).
(d) By the factorization theorem, \(\prod x_i \) is sufficient for \(\theta \): let \(g[T(x_1, \ldots, x_n), \theta] = (\theta + 1)^n (\prod x_i)^\theta \), and let \(h(x_1, \ldots, x_n) = 1 \).