Practice Problems

Problems in the final exam can be significantly different from the following problem set.

1. Let $X \sim U(0, 1)$. (i) Calculate $P(X)$. (ii) Find the value of the constant c for which $P(X - c)^2$ is as small as possible. (iii) Find the density of $Y = 1/X$. (iv) Find the density of $Y = \tan(\pi X - \frac{\pi}{2})$.

2. For events A_1, A_2, \ldots that are not necessarily disjoint, establish the inequality

 $P(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)$

 by the following method: explain why $I_{\bigcup_{i=1}^n A_i} \leq \sum_{i=1}^n I_{A_i}$ and then take expectation to complete the proof, where the indicator function $I_A(\omega) = 1$, for $\omega \in A$; 0, otherwise.

3. Suppose X and Y are independent random variables, each $Uniform(0, 1)$ distributed. Treat X and Y as the coordinates of a point in the unit square. (i) Show that $\text{cov}(X + Y, X - Y) = 0$. (ii) Find the region of the square where $X + Y \geq 7/4$ and $X - Y \geq 3/4$. (iii) Find $P\{X + Y \geq 7/4 | X - Y \geq 3/4\}$. (iv) Show that $X + Y$ and $X - Y$ are not independent.

4. Suppose I have three coins in my pocket: the first lands heads with probability 0.1, the second with probability 0.5, and the third with probability 0.9. I select a coin at random from my pocket and toss it twice. Let C_i denote the event that I choose coin i, for $i = 1, 2, 3$, and H_n denote the event that the nth toss lands heads, for $n = 1, 2$. (i) Find $P(C_i|H_1)$ for $i = 1, 2, 3$. (ii) Find $P(H_1)$. (iii) Find $P(C_i|H_1)$ for $i = 1, 2, 3$. (iv) Find $P(H_2|H_1)$.

5. A radioactive material emits -particles at a rate described by the density function

 $f(t) = \lambda e^{-\lambda t}$, λ is a known constant.

 Find the probability that a particle is emitted in the first 10 seconds, given that (i) no particle is emitted in the first second. (ii) no particle is emitted in the first 5 seconds. (iii) a particle is emitted in the first 3 seconds. (iv) a particle is emitted in the first 20 seconds.

6. Let X have a $Bin(n, p)$ distribution. Put $b(k) = P\{X = k\}$, for $k = 0, 1, \ldots, n$. (i) Find the ratio $b(k)/b(k-1)$ for $k = 1, 2, \ldots, n$. (ii) Show that the ratio $b(k)/b(k-1)$ is ≥ 1 if and only if $1 \leq k \leq (n + 1)p$. (iii) Show that $b(k)$ achieves its maximum value at $k^* = \lfloor (n + 1)p \rfloor$, the largest integer $\leq (n + 1)p$. Show that $b(k)$ increases monotonely for $k \leq k^*$ then decreases monotonely for $k > k^*$. (That is, show that the mode of the Binomial distribution is close to np.)
7. For 1-dimensional random walk with $p = 2/3$, show that the probability that the walk never returns to 0 is positive.

8. Suppose 100 envelopes are prepared for 100 letters, but, through an unfortunate accident, the letters are assigned at random (all permutations equally likely), one letter per envelope. Say that letters i and j are switched if letter i is placed in envelope j and letter j is placed in envelope i. (i) For each pair $i < j$, define $X_{ij} = 1$, if letters i and j are switched; 0, otherwise. Find $P[X_{ij} = 1]$. (ii) Are the random variables X_{12} and X_{34} independent? Explain. (iii) Find the expected number of switches.

9. Assume that, every time you buy a box of Wheaties, you receive a picture of one of the n players for the New York Yankees (see Exercise 3.2.34). Let X_k be the number of additional boxes you have to buy, after you have obtained $k - 1$ different pictures, in order to obtain the next new picture. Thus $X_1 = 1$, X_2 is the number of boxes bought after this to obtain a picture different from the first pictured obtained, and so forth. (i) Show that X_k has a geometric distribution with $p = (n - k + 1)/n$. (ii) Calculate the expected number of boxes to get all players.

10. Suppose X is a random variable and Ψ is a nonnegative increasing function on $[0, \infty)$. For each $\varepsilon > 0$, show that $P\{|X| \geq \varepsilon\} \leq P\Psi(|X|)/\Psi(\varepsilon)$.

11. Let X_1, \ldots, X_n be i.i.d. with $P\{X_i = 1\} = p$ and $P\{X_i = 0\} = 1 - p$. Define $Y_i = X_i - p$. Note that $X = X_1 + \ldots + X_n$ has a $\text{Bin}(n, p)$ distribution. (i) Find $P(Y_i)$ and $P(Y_i^2)$ and $P(Y_i^4)$. (ii) Find $P(\Sigma_{i=1}^n Y_i)^2$ and $P(\Sigma_{i=1}^n Y_i)^4$. (iii) Show that $P\{|X - np| \geq \varepsilon\} \leq P(\Sigma_{i=1}^n Y_i)^2/\varepsilon^2$ and $P\{|X - np| \geq \varepsilon\} \leq P(\Sigma_{i=1}^n Y_i)^4/\varepsilon^4$. (iv) For two bounds in (iii), which one is better?

12. Suppose X and Y are independent random variables, with $X \sim \text{Poisson}(\lambda)$ and $Y \sim \text{Poisson}(\mu)$. Show that given $X + Y = n$, the random variable X has a $\text{Bin}(n, p)$ distribution with $p = \lambda/(\lambda + \mu)$.

13. Suppose X has a continuous distribution with density $f(\cdot)$. Let $Y = a + bX$ and $Z = -X$, where a and b are constants with $b > 0$. Find the density functions for the distributions of Y and Z.

14. Let Z_1, Z_2, \ldots, Z_n be i.i.d. $N(0, 1)$. Let $Y = \sqrt{\frac{Z_1^2 + \ldots + Z_n^2}{n-1}}$. What is the density of Y?

15. Let X_1, \ldots, X_n be i.i.d. exponential(λ). Let $M = \min\{X_1, \ldots, X_n\}$. Find the density for M.

16. Suppose Z has a $N(0, 1)$ distribution. Define $\mu_k = PZ^k$ for each nonnegative integer k. Note that $\mu_0 = 1$. (i) Explain why $\mu_k = 0$ when k is odd. (ii) Find the moment generating function $g_Z(t) = Pe^{t^2}$ of Z. (iii) Find μ_4.

2
17. Suppose X and Y are independent random variables, each with density function $f(t) = e^{-t}$ for $t > 0$. Let $U = X$ and $V = X - Y$. Write Ψ for the joint density function of U and V. (i) Indicate the region of the (U,V)-plane where $\Psi > 0$. (ii) Find Ψ. (iii) Find the distribution of $X - Y$.