Contents

PART I BASIC THEORY

1 **Heuristics**
 1 Notation and truth ... 3
 2 Limit theory ... 5
 2.1 Local concentration (consistency) 6
 2.2 Rate of convergence 7
 2.3 Limiting distribution 8
 3 Efficiency heuristics 10
 4 The concept of efficiency 12

2 **Consistency**
 1 Comparison arguments 17
 1.1 Another comparison argument 20
 2 Consistency: Wald's method 21
 3 Uniform approximation 24
 4 Global difficulties 24
 5 High-level conditions 27
 6 Z-estimators ... 30
 7 A nonparametric example 30

3 **Rates of convergence and limit distributions**
 1 Preliminaries on stochastic order notation 39
 2 Approximation of minimizing values 41
 3 Comparisons .. 44
 4 The classical (local) regularity conditions 48
 5 Estimation of a mode 50
 6 Censored LAD regression [needs editing] 53
 7 Trouble at the boundary 54
 8 Likelihood ratio tests [unedited junk] 55
 9 Strange behaviour at the boundary [needs editing] .. 55

4 **Classical regularity conditions**
 1 Comparison arguments 63
 2 The classical (local) regularity conditions 65
 3 Asymptotics via quadratic approximation 69
 4 Quadratic approximation on a grid: Le Cam's method .. 74
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Likelihood ratio tests</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>6 Tangent approximations</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>7 Behaviour under alternatives</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>8 Strange behaviour at the boundary</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>5 Convexity</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 A convexity simplification</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>2 An approximation lemma</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>3 A constrained minimization problem</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>4 Iterative proportional fitting</td>
<td>96</td>
</tr>
<tr>
<td>6 Categorical data</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Introduction</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>2 Goodness of fit tests</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>3 Asymptotics</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>4 Inefficient</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>5 The conditioned Poisson model</td>
<td>109</td>
</tr>
<tr>
<td>7 Contiguity</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Definition and equivalences</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>2 Contiguity for product measures</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>3 Limit distributions under contiguous alternatives</td>
<td>131</td>
</tr>
<tr>
<td>8 Total variation distance between measures</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Why bother with different distances?</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>2 Total variation and lattice operations</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>3 Some examples of total variation distances</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>4 Total variation and minimax rates of convergence</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>5 Hellinger and Kullback-Leibler distances</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>6 The Chen-Stein method for Poisson approximation</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>7 The L^1 norm</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>8 Second-moment bounds on total variation distance</td>
<td>161</td>
</tr>
<tr>
<td>9 Minimax lower bounds</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Why minimax?</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>2 General techniques</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>2.1 Reduction to estimation problem</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>2.2 Bayes</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>2.3 Assouad (and Harry)</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>2.4 Fano, Tsybakov</td>
<td>173</td>
</tr>
</tbody>
</table>
3 Lower bounds for minimax risks 174
4 Achievability .. 179
5 Bounds on total variation distance 179
6 Pointwise estimation of densities 181
7 Quadratic functional of Gaussian means 183
8 Quadratic functionals of densities 186

10 Hellinger differentiability 193
 1 Heuristics ... 193
 2 A sufficient condition for Hellinger differentiability 196
 3 Information inequality 201
 4 Possible trouble at the boundary 205
 5 An intrinsic characterization of Hellinger differentiability 206
 6 Preservation of DQM under measurable maps 207
 7 Differentiability of unit vectors.......................... 210
 8 Quadratic approximation for log likelihood ratios 212
 9 The vanTrees inequality 216

11 Local Asymptotic Normality 225
 1 LAN and Gaussian shift families 225
 2 Differentiation of unit vectors 230
 3 A quadratic approximation to log likelihood ratios 231
 4 Quadratic approximation on a grid: Le Cam’s method ... 237
 5 Bahadur’s rescue of efficiency 238

12 Efficiency and the LAN Property 243
 1 Efficiency: sunk and rescued 243
 2 Local alternatives and automatic equivariance 246
 3 The negligible set of points of superefficiency 248
 4 Gaussian shift families 250
 5 The convolution theorem 256
 6 The local asymptotic minimax theorem 260

13 Case Studies ... 269
 1 Nonlinear least squares 269
 2 Estimation of a mode 274
 3 Powell’s LAD estimator for censored regression 280
 4 Binary choice ... 287
PART II COMPARISON OF EXPERIMENTS 295

14 Equivalence of experiments 297
 1 Randomization . 297
 2 Markov equivalence . 299
 3 Kolmogorov equivalence . 300
 4 Le Cam-randomization. . 303
 5 Sufficiency and canonical measures 304
 6 Choice of sample space . 307

15 Randomization 311
 1 Le Cam distance . 311
 2 Linear functionals and measures 312
 3 Randomization: three possibilities 315
 4 Conditioning . 318
 5 Sufficiency and canonical measures 319
 6 Advantages of Le Cam randomizations 322
 7 Choice of sample space . 322
 8 Problems . 323
 9 Notes . 323

16 Distances between experiments 325
 1 Le Cam’s distance between experiments 325
 2 Sufficient conditions . 327
 3 Risk functions . 328

17 Distance between multinomial and multivariate normal models 331
 1 Introduction . 331
 2 Conditioning . 335
 3 From multinomial to multivariate normal 337
 4 From multivariate normal to multinomial (sketch) 341
 5 Hellinger bound for smoothed Binomial 341
 6 Independent normals . 343
 7 Variance stabilizing transformations 345
 8 Intepolation of increments . 347

PART III A MINI-COURSE IN MAXIMAL INEQUALITIES 351

19 Maxima of finitely many variables 353
25 Majorizing measures 465
1 Introduction ... 465
2 Two informative examples 467
3 Reduction to a compact or finite set 470
4 Method of Kwapień and Rosiński 470
5 Rewrite of Bednorz 470
6 Bednorz’s method for bounded sample paths 474
7 Bednorz’s method for continuous sample paths [incomplete] 478
8 Bounding sums by integrals 480
9 Problems ... 481

26 Bracketing methods 483
1 What is bracketing? 483
2 Independent summands 489
3 A generic bracketing bound 496
4 Phi mixing .. 501
5 Absolute regularity 505
6 Strong mixing .. 507
7 Tail probability bounds 508

APPENDIXES 517

A Prerequisites 519
1 The multivariate normal and chi-square distributions 519
2 Limit theorems for random vectors 521
3 Lebesgue decomposition 522
4 Taylor expansions, and inequalities 522
5 Convexity inequalities 523
6 Exponential inequalities 524
7 Stochastic order symbols 527
8 Exponential families 528

B Divergence distances 533
1 Some convexity facts 533
2 Divergence ‘distances’ between probability measures 534
3 Inequalities .. 536
C Anderson’s lemma 539

D Gaussian shift families 547
 1 Heuristics .. 547
 2 A rigorous argument 548

E Almost invariant measures 553
 1 Heuristics ... 553

H Minimax theorem 557
 1 A general minimax theorem 557
 2 Notes .. 560

G Vector Lattices 561
 1 Definitions .. 561
 2 Basic facts .. 562
 3 Order-bounded linear functionals 564
 4 Lattices of bounded functions 567
 5 Bands in a vector lattice 570
 6 The band of countably additive measures 574
 7 Projections onto bands in a vector lattice 575

I Nets 579
 1 Nets as generalized sequences 579
 2 Universal subnets 580
 3 Zorn’s Lemma ... 581

J Poisson counts 583
 1 The conditioned Poisson model 583