Statistics and Data Science 242/542: Theory of Statistics

Zhou Fan, Yale University, Spring 2025


Course schedule (tentative)

Unit 0 - Introduction and tools
Mon 1/13 Course introduction, survey sampling Rice 7.1-7.3
Wed 1/15 Probability review I Rice 2.1-4.3
Wed 1/22 Probability review II Rice 4.5, 6.1-6.2
Fri 1/24 Large-sample approximations, computer simulation Rice 5.1-5.3
Unit 1 - Hypothesis testing
Mon 1/27 Null hypotheses, test statistics, p-values Rice 9.7-9.8
Wed 1/29 z-tests and t-tests for one and two samples Rice 6.3, 11.1-11.2
Mon 2/3 Nonparametric tests, permutation tests Rice 11.2-11.3
Wed 2/5 Statistical power, Neyman-Pearson lemma Rice 9.1-9.2
Mon 2/10 Effect size, power, and experimental design Rice 11.3-11.4
Wed 2/12 Testing multiple hypotheses ISLR 13.1-13.4
Unit 2 - Parametric models
Mon 2/17 Parametric models and method of moments Rice 8.1-8.4
Wed 2/19 Maximum likelihood estimation and optimization Rice 8.5-8.5.1
Mon 2/24 Asymptotic normality and the delta method Rice 4.6
Wed 2/26 Consistency and asymptotic normality of the MLE Rice 8.5.2-8.5.3
Mon 3/3 Fisher information and the Cramer-Rao bound Rice 8.7
Wed 3/5 The generalized likelihood ratio test Rice 9.4-9.5
Mon 3/10 - Fri 3/21: No class, spring recess
Mon 3/24 Bayesian inference I Rice 8.6-8.6.1
Wed 3/26 Bayesian inference II Rice 8.6.2-8.6.3
Mon 3/31 Parameter estimation in misspecified models
Wed 4/2 Uncertainty quantification using the bootstrap ISLR 5.2
Unit 3 - Predictive inference
Mon 4/7 Models with covariates and response ISLR 2.1-3.1
Wed 4/9 Inference in simple linear regression Rice 14.2, ISLR 3.1
Mon 4/14 Multiple linear regression ISLR 3.2-3.3
Wed 4/16 Classification and logistic regression ISLR 4.1-4.3
Mon 4/21 Generative models for classification ISLR 4.4-4.5
Wed 4/23 Conformal prediction and cross-validation ISLR 5.1